文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于非小细胞肺癌光化疗的新型多功能化多细胞纳米递药系统。

A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy.

机构信息

Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

出版信息

J Nanobiotechnology. 2021 Aug 14;19(1):245. doi: 10.1186/s12951-021-00977-3.


DOI:10.1186/s12951-021-00977-3
PMID:34391438
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8364713/
Abstract

BACKGROUND: A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS: Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS: The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.

摘要

背景:红细胞膜(RBCm)衍生的药物递送系统可延长抗肿瘤治疗的循环时间,并克服 PEG 化诱导的血液清除加速问题。然而,RBCm 衍生的药物递送系统受到载药能力低和缺乏肿瘤靶向能力的限制。因此,需要新的 RBCm 基递送系统设计。

结果:在此,我们设计了透明质酸(HA)杂交的 RBCm(HA&RBCm)包被的脂质多腔纳米颗粒(HA&RBCm-LCNPs),以弥补传统 RBCm 药物递送系统的局限性。HA&RBCm-LCNPs 中的内芯与磷脂调节的甘油二油酸酯/水体系共同组装,达到了静脉注射所需的血液相容性水平。这些新设计的纳米载体具有丰富空间的蜂窝结构,可有效包封紫杉醇和 IR780 用于光化疗。HA&RBCm 涂层使纳米载体能够克服网状内皮系统屏障,并增强纳米载体对高表达 CD44 的 A549 细胞的特异性。这些特性增强了紫杉醇和 IR780 的联合抗肿瘤作用,与微管破坏和线粒体凋亡途径有关。

结论:我们设计的多功能 HA&RBCm-LCNPs 扩展了 RBCm 的功能,为安全有效的抗肿瘤治疗提供了一种载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/ddf9307465a0/12951_2021_977_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/4849c16595ab/12951_2021_977_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/1e61bd8ee732/12951_2021_977_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/1707dd6232c8/12951_2021_977_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/0c58df08dd56/12951_2021_977_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/4cd77f9853bb/12951_2021_977_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/cc97bc0f5cd1/12951_2021_977_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/6bcbd222e62c/12951_2021_977_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/2ed9ce51daf0/12951_2021_977_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/403595781316/12951_2021_977_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/e3d8573e5521/12951_2021_977_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/ddf9307465a0/12951_2021_977_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/4849c16595ab/12951_2021_977_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/1e61bd8ee732/12951_2021_977_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/1707dd6232c8/12951_2021_977_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/0c58df08dd56/12951_2021_977_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/4cd77f9853bb/12951_2021_977_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/cc97bc0f5cd1/12951_2021_977_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/6bcbd222e62c/12951_2021_977_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/2ed9ce51daf0/12951_2021_977_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/403595781316/12951_2021_977_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/e3d8573e5521/12951_2021_977_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffc/8364713/ddf9307465a0/12951_2021_977_Fig11_HTML.jpg

相似文献

[1]
A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy.

J Nanobiotechnology. 2021-8-14

[2]
Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling.

Biomed Pharmacother. 2020-9

[3]
Erythrocyte Membrane-Wrapped pH Sensitive Polymeric Nanoparticles for Non-Small Cell Lung Cancer Therapy.

Bioconjug Chem. 2017-10-18

[4]
Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment.

Int J Nanomedicine. 2018-8-31

[5]
Novel biomimetic nanostructured lipid carriers for cancer therapy: preparation, characterization, and / evaluation.

Pharm Dev Technol. 2021-1

[6]
Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

Oncotarget. 2015-12-8

[7]
Novel Chinese Angelica Polysaccharide Biomimetic Nanomedicine to Curcumin Delivery for Hepatocellular Carcinoma Treatment and Immunomodulatory Effect.

Phytomedicine. 2020-9-25

[8]
Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy.

Artif Cells Nanomed Biotechnol. 2019-12

[9]
Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo-Chemo Combination Therapy.

Mol Pharm. 2019-6-11

[10]
Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

Tumour Biol. 2016-6

引用本文的文献

[1]
Targeted tumor cell-intrinsic CTRP6 biomimetic codelivery synergistically amplifies ferroptosis and immune activation to boost anti-PD-L1 immunotherapy efficacy in lung cancer.

J Nanobiotechnology. 2025-6-2

[2]
Engineered Perfluorochemical Cancer-Derived Exosomes Loaded with Indocyanine Green and Camptothecin Provide Targeted Photochemotherapy for Effective Cancer Treatment.

Int J Nanomedicine. 2025-1-8

[3]
Vascular restenosis following paclitaxel-coated balloon therapy is attributable to NLRP3 activation and LIN9 upregulation.

J Transl Med. 2024-9-27

[4]
Tailoring biomaterials for vaccine delivery.

J Nanobiotechnology. 2024-8-12

[5]
Advances in cell membrane-based biomimetic nanodelivery systems for natural products.

Drug Deliv. 2024-12

[6]
Reprogramming exosomes for immunity-remodeled photodynamic therapy against non-small cell lung cancer.

Bioact Mater. 2024-5-21

[7]
The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment.

Front Pharmacol. 2024-4-16

[8]
Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications.

Mater Today Bio. 2023-12-15

[9]
Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy.

Pharmaceutics. 2023-12-13

[10]
Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors.

Mater Today Bio. 2023-8-3

本文引用的文献

[1]
One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy.

Nanomicro Lett. 2020-6-16

[2]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[3]
Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement.

J Nanobiotechnology. 2021-1-6

[4]
Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer.

J Nanobiotechnology. 2020-9-4

[5]
A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics.

Sci Adv. 2020-7-15

[6]
Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma.

Theranostics. 2020

[7]
CuS-NiS nanomaterials for MRI guided phototherapy of gastric carcinoma triggering mitochondria-mediated apoptosis and MLKL/CAPG-mediated necroptosis.

Nanotoxicology. 2020-5-13

[8]
The near-infrared fluorescent dye IR-780 was coupled with cabazitaxel for castration-resistant prostate cancer imaging and therapy.

Invest New Drugs. 2020-12

[9]
Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis.

Nanomedicine. 2020-8

[10]
DMAMCL exerts antitumor effects on hepatocellular carcinoma both in vitro and in vivo.

Cancer Lett. 2020-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索