文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于片上系统的仿生神经刺激器,用于新型任意波形刺激协议。

A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols.

作者信息

Culaclii Stanislav, Wang Po-Min, Taccola Giuliano, Yang William, Bailey Brett, Chen Yan-Peng, Lo Yi-Kai, Liu Wentai

机构信息

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States.

出版信息

Front Neurosci. 2021 Jul 29;15:697731. doi: 10.3389/fnins.2021.697731. eCollection 2021.


DOI:10.3389/fnins.2021.697731
PMID:34393710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8358079/
Abstract

Novel neural stimulation protocols mimicking biological signals and patterns have demonstrated significant advantages as compared to traditional protocols based on uniform periodic square pulses. At the same time, the treatments for neural disorders which employ such protocols require the stimulator to be integrated into miniaturized wearable devices or implantable neural prostheses. Unfortunately, most miniaturized stimulator designs show none or very limited ability to deliver biomimetic protocols due to the architecture of their control logic, which generates the waveform. Most such designs are integrated into a single System-on-Chip (SoC) for the size reduction and the option to implement them as neural implants. But their on-chip stimulation controllers are fixed and limited in memory and computing power, preventing them from accommodating the amplitude and timing variances, and the waveform data parameters necessary to output biomimetic stimulation. To that end, a new stimulator architecture is proposed, which distributes the control logic over three component tiers - software, microcontroller firmware and digital circuits of the SoC, which is compatible with existing and future biomimetic protocols and with integration into implantable neural prosthetics. A portable prototype with the proposed architecture is designed and demonstrated in a bench-top test with various known biomimetic output waveforms. The prototype is also tested to deliver a complex, continuous biomimetic stimulation to a rat model of a spinal-cord injury. By delivering this unique biomimetic stimulation, the device is shown to successfully reestablish the connectivity of the spinal cord post-injury and thus restore motor outputs in the rat model.

摘要

与基于均匀周期性方波脉冲的传统协议相比,模仿生物信号和模式的新型神经刺激协议已显示出显著优势。与此同时,采用此类协议治疗神经疾病需要将刺激器集成到小型可穿戴设备或植入式神经假体中。不幸的是,由于其产生波形的控制逻辑架构,大多数小型刺激器设计在提供仿生协议方面表现出无能力或能力非常有限。大多数此类设计都集成到单个片上系统(SoC)中,以减小尺寸并选择将其实现为神经植入物。但是它们的片上刺激控制器是固定的,内存和计算能力有限,这使得它们无法适应幅度和时间变化以及输出仿生刺激所需的波形数据参数。为此,提出了一种新的刺激器架构,该架构将控制逻辑分布在三个组件层上——软件、微控制器固件和SoC的数字电路,它与现有的和未来的仿生协议兼容,并可集成到植入式神经假体中。设计了具有所提出架构的便携式原型,并在台式测试中用各种已知的仿生输出波形进行了演示。该原型还经过测试,可向脊髓损伤大鼠模型提供复杂的、连续的仿生刺激。通过提供这种独特的仿生刺激,该设备被证明能够成功重建损伤后脊髓的连接性,从而恢复大鼠模型中的运动输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/c77d8540f5b5/fnins-15-697731-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/edcf19670a2f/fnins-15-697731-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/0a56652a79d2/fnins-15-697731-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/c6a699b6880c/fnins-15-697731-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/2868650857a6/fnins-15-697731-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/861a7dc1dbdc/fnins-15-697731-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d9669bd81fd6/fnins-15-697731-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d4e7bdf1d234/fnins-15-697731-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/cc0c9e1c149f/fnins-15-697731-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/af8d386fe50b/fnins-15-697731-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/166cc0de9452/fnins-15-697731-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d381998a6a43/fnins-15-697731-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/c77d8540f5b5/fnins-15-697731-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/edcf19670a2f/fnins-15-697731-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/0a56652a79d2/fnins-15-697731-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/c6a699b6880c/fnins-15-697731-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/2868650857a6/fnins-15-697731-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/861a7dc1dbdc/fnins-15-697731-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d9669bd81fd6/fnins-15-697731-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d4e7bdf1d234/fnins-15-697731-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/cc0c9e1c149f/fnins-15-697731-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/af8d386fe50b/fnins-15-697731-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/166cc0de9452/fnins-15-697731-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/d381998a6a43/fnins-15-697731-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e9a/8358079/c77d8540f5b5/fnins-15-697731-g012.jpg

相似文献

[1]
A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols.

Front Neurosci. 2021-7-29

[2]
A Novel Biomimetic Stimulator System for Neural Implant.

Int IEEE EMBS Conf Neural Eng. 2019-3

[3]
A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.

IEEE J Solid-State Circuits. 2015-1-1

[4]
A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.

IEEE Trans Biomed Circuits Syst. 2013-12

[5]
16-Channel biphasic current-mode programmable charge balanced neural stimulation.

Biomed Eng Online. 2017-8-14

[6]
A Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injury.

IEEE Trans Biomed Circuits Syst. 2017-6

[7]
An architecture for a universal neural stimulator with almost arbitrary current waveform.

Annu Int Conf IEEE Eng Med Biol Soc. 2010

[8]
A Scalable, Programmable Neural Stimulator for Enhancing Generalizability in Neural Interface Applications.

Biosensors (Basel). 2024-6-28

[9]
Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

IEEE Trans Biomed Circuits Syst. 2017-8

[10]
An Implantable Optogenetic Neuro-Stimulator SoC With Extended Optical Pulse-Width Enabled by Supply-Variation-Immune Cycled Light-Toggling Stimulation.

IEEE Trans Biomed Circuits Syst. 2022-8

引用本文的文献

[1]
Highly efficient modeling and optimization of neural fiber responses to electrical stimulation.

Nat Commun. 2024-8-31

本文引用的文献

[1]
A Brain-Spinal Interface (BSI) System-on-Chip (SoC) for Closed-Loop Cortically-Controlled Intraspinal Microstimulation.

Analog Integr Circuits Signal Process. 2018-4

[2]
The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons.

J Neural Eng. 2021-1-25

[3]
A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity.

J Neural Eng. 2020-8-4

[4]
A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication.

Nat Biomed Eng. 2020-2-19

[5]
Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury.

Exp Neurol. 2020-2-11

[6]
Using EMG to deliver lumbar dynamic electrical stimulation to facilitate cortico-spinal excitability.

Brain Stimul. 2019-9-26

[7]
A Novel Biomimetic Stimulator System for Neural Implant.

Int IEEE EMBS Conf Neural Eng. 2019-3

[8]
A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates.

Nat Biomed Eng. 2018-12-31

[9]
Targeted neurotechnology restores walking in humans with spinal cord injury.

Nature. 2018-10-31

[10]
Irregularly timed electrical pulses reduce adaptation of retinal ganglion cells.

J Neural Eng. 2018-7-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索