Suppr超能文献

利用连续小波变换和深度学习提高基于光电容积脉搏波的血压分类准确率

Improving the Accuracy in Classification of Blood Pressure from Photoplethysmography Using Continuous Wavelet Transform and Deep Learning.

作者信息

Wu Jiaze, Liang Hao, Ding Changsong, Huang Xindi, Huang Jianhua, Peng Qinghua

机构信息

Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.

Post-Doctoral Research Station of Integrative Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.

出版信息

Int J Hypertens. 2021 Aug 5;2021:9938584. doi: 10.1155/2021/9938584. eCollection 2021.

Abstract

BACKGROUND

Continuous wavelet transform (CWT) based scalogram can be used for photoplethysmography (PPG) signal transformation to classify blood pressure (BP) with deep learning. We aimed to investigate the determinants that can improve the accuracy of BP classification based on PPG and deep learning and establish a better algorithm for the prediction.

METHODS

The dataset from PhysioNet was accessed to extract raw PPG signals for testing and its corresponding BPs as category labels. The BP category of normal or abnormal followed the criteria of the 2017 American College of Cardiology/American Heart Association (ACC/AHA) Hypertension Guidelines. The PPG signals were transformed into 224  224  3-pixel scalogram via different CWTs and segment units. All of them are fed into different convolutional neural networks (CNN) for training and validation. The receiver-operating characteristic and loss and accuracy curves were used to evaluate and compare the performance of different methods.

RESULTS

Both wavelet type and segment length could affect the accuracy, and Cgau1 wavelet and segment-300 revealed the best performance (accuracy 90%) without obvious overfitting. This method performed better than previously reported MATLAB Morse wavelet transformed scalogram on both of our proposed CNN and CNN-GoogLeNet.

CONCLUSIONS

We have established a new algorithm with high accuracy to predict BP classification from PPG via matching of CWT type and segment length, which is a promising solution for rapid prediction of BP classification from real-time processing of PPG signal on a wearable device.

摘要

背景

基于连续小波变换(CWT)的小波图可用于光电容积脉搏波描记法(PPG)信号变换,以通过深度学习对血压(BP)进行分类。我们旨在研究可提高基于PPG和深度学习的血压分类准确性的决定因素,并建立一种更好的预测算法。

方法

访问PhysioNet数据集以提取原始PPG信号进行测试,并将其相应的血压作为类别标签。正常或异常的血压类别遵循2017年美国心脏病学会/美国心脏协会(ACC/AHA)高血压指南的标准。通过不同的连续小波变换和分段单元,将PPG信号转换为224×224×3像素的小波图。所有这些都被输入到不同的卷积神经网络(CNN)中进行训练和验证。使用接收者操作特征曲线以及损失和准确率曲线来评估和比较不同方法的性能。

结果

小波类型和分段长度都会影响准确率,而Cgau1小波和300分段显示出最佳性能(准确率90%),且无明显过拟合。在我们提出的卷积神经网络和卷积神经网络-谷歌网络上,该方法的表现均优于先前报道的基于MATLAB莫尔斯小波变换的小波图。

结论

我们通过连续小波变换类型与分段长度的匹配,建立了一种高精度的新算法,用于从PPG预测血压分类,这是一种通过可穿戴设备对PPG信号进行实时处理来快速预测血压分类的有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0479/8360747/f88196381a31/ijhy2021-9938584.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验