Cano Jesús, Bertomeu-González Vicente, Fácila Lorenzo, Hornero Fernando, Alcaraz Raúl, Rieta José J
BioMIT.org, Electronic Engineering Department, Universitat Politecnica de Valencia, 46022 Valencia, Spain.
Cardiovascular Research Group, Clinical Medicine Department, Miguel Hernández University, 03202 Alicante, Spain.
Bioengineering (Basel). 2023 Dec 18;10(12):1439. doi: 10.3390/bioengineering10121439.
Hypertension, a primary risk factor for various cardiovascular diseases, is a global health concern. Early identification and effective management of hypertensive individuals are vital for reducing associated health risks. This study explores the potential of deep learning (DL) techniques, specifically GoogLeNet, ResNet-18, and ResNet-50, for discriminating between normotensive (NTS) and hypertensive (HTS) individuals using photoplethysmographic (PPG) recordings. The research assesses the impact of calibration at different time intervals between measurements, considering intervals less than 1 h, 1-6 h, 6-24 h, and over 24 h. Results indicate that calibration is most effective when measurements are closely spaced, with an accuracy exceeding 90% in all the DL strategies tested. For calibration intervals below 1 h, ResNet-18 achieved the highest accuracy (93.32%), sensitivity (84.09%), specificity (97.30%), and F1-score (88.36%). As the time interval between calibration and test measurements increased, classification performance gradually declined. For intervals exceeding 6 h, accuracy dropped below 81% but with all models maintaining accuracy above 71% even for intervals above 24 h. This study provides valuable insights into the feasibility of using DL for hypertension risk assessment, particularly through PPG recordings. It demonstrates that closely spaced calibration measurements can lead to highly accurate classification, emphasizing the potential for real-time applications. These findings may pave the way for advanced, non-invasive, and continuous blood pressure monitoring methods that are both efficient and reliable.
高血压是各种心血管疾病的主要危险因素,是一个全球关注的健康问题。对高血压患者进行早期识别和有效管理对于降低相关健康风险至关重要。本研究探讨了深度学习(DL)技术,特别是GoogLeNet、ResNet-18和ResNet-50,利用光电容积脉搏波描记法(PPG)记录来区分正常血压(NTS)和高血压(HTS)个体的潜力。该研究评估了测量之间不同时间间隔校准的影响,考虑的时间间隔小于1小时、1 - 6小时、6 - 24小时和超过24小时。结果表明,当测量间隔很近时校准最有效,在所有测试的DL策略中准确率超过90%。在校准间隔低于1小时时,ResNet-18达到了最高准确率(93.32%)、灵敏度(84.09%)、特异性(97.30%)和F1分数(88.36%)。随着校准和测试测量之间的时间间隔增加,分类性能逐渐下降。对于超过6小时的间隔,准确率降至81%以下,但即使对于超过24小时的间隔,所有模型的准确率仍保持在71%以上。本研究为使用DL进行高血压风险评估的可行性提供了有价值的见解,特别是通过PPG记录。它表明紧密间隔的校准测量可以导致高度准确的分类,强调了实时应用的潜力。这些发现可能为先进、无创和连续的血压监测方法铺平道路,这些方法既高效又可靠。