Suppr超能文献

通过孔工程实现高性能金属有机框架材料。

Achieving High Performance Metal-Organic Framework Materials through Pore Engineering.

机构信息

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.

出版信息

Acc Chem Res. 2021 Sep 7;54(17):3362-3376. doi: 10.1021/acs.accounts.1c00328. Epub 2021 Aug 17.

Abstract

Achieving high performance functional materials has been a long-term goal for scientists and engineers that can significantly promote science and technology development and thus benefit our society and human beings. As well-known porous materials, metal-organic frameworks (MOFs) are crystalline open frameworks made up of molecular building blocks linked by strong coordination bonds, affording pore space for storing and trapping guest molecules. In terms of porosity, MOFs outperform traditional porous materials including zeolites and activated carbon, showing exceptional porosity with internal surface area up to thousands of square meters per gram of sample and with periodic pore sizes ranging from sub-nanometer to nanometers. Numerous MOFs have been synthesized with potential applications ranging from storing gaseous fuels to separating intractable industrial gas mixtures, sensing physical and chemical stimulus, and transmitting protons for conduction. Compared to traditional porous materials, MOFs are distinguished for their exceptional capability for pore adjustment and interior modification through pore engineering, which have made them a preeminent platform for exploring functional materials with high performance.Rational combinations of rigid building units of different geometry and multibranched organic linkers have provided MOFs with diverse pore structures, ranging from spherical to cylindrical, slit, and tubular ones isolating or interconnecting in different directions, which can be optimized for high-capacity gas storage. Based on the isoreticular principle and building blocks approach in MOF chemistry, the pore adjustment of porous materials can be performed with exquisite precision, making them suitable to address industrially important gas separation. The large pore cavities in MOFs are readily available for encapsulation of different functional guest species, resulting in novel MOF composite materials with various functions.In this Account, we summarize our recent research progress on pore engineering to achieve high-performance MOF materials. We have been able to tune and optimize pore structures, immobilize specific functional sites, and incorporate guest species into target MOF materials for hydrogen storage, methane storage, light-hydrocarbon purification, and proton conduction, especially for various industrially important gas separations including acetylene removal and ethylene and propylene purification. By engineering the porosity and pore chemistry that endows MOFs with multiple functionalities, our research endeavors have brought about the customization of high-performance MOF materials for corresponding application scenarios.

摘要

实现高性能功能材料一直是科学家和工程师的长期目标,这可以极大地促进科学技术的发展,从而使我们的社会和人类受益。金属-有机骨架(MOF)作为众所周知的多孔材料,是由分子构建块通过强配位键连接而成的晶体开放骨架,为储存和捕获客体分子提供了空间。在多孔性方面,MOF 优于传统多孔材料,包括沸石和活性炭,具有出色的多孔性,其比表面积高达每克样品数千平方米,孔径周期性从亚纳米到纳米不等。已经合成了许多 MOF,其潜在应用范围从储存气态燃料到分离难以处理的工业气体混合物,以及用于物理和化学刺激感应以及质子传导的材料。与传统多孔材料相比,MOF 的独特之处在于其通过孔工程对孔进行调整和内部修饰的能力,这使其成为探索高性能功能材料的卓越平台。通过使用不同几何形状的刚性构建单元和多分支有机连接体的合理组合,MOF 具有从球形到圆柱形、狭缝形和管状的多种孔结构,这些孔结构可以在不同方向上隔离或连接,从而可以对其进行优化以实现高容量的气体储存。基于 MOF 化学中的等孔原理和构建基块方法,可以对多孔材料的孔结构进行精密调整,从而使其适用于解决重要的工业气体分离问题。MOF 中的大孔腔很容易封装不同的功能客体物种,从而形成具有各种功能的新型 MOF 复合材料。在本综述中,我们总结了我们在孔工程方面的最新研究进展,以实现高性能 MOF 材料。我们已经能够调整和优化孔结构、固定特定的功能位点,并将客体物种掺入目标 MOF 材料中,用于氢气储存、甲烷储存、轻烃净化和质子传导,特别是用于各种重要的工业气体分离,包括乙炔去除和乙烯和丙烯的纯化。通过对赋予 MOF 多种功能的孔隙率和孔化学的工程设计,我们的研究努力为相应的应用场景定制了高性能 MOF 材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验