Suppr超能文献

人工智能与新冠肺炎:用于诊断和治疗的深度学习方法

Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment.

作者信息

Jamshidi Mohammad Behdad, Lalbakhsh Ali, Talla Jakub, Peroutka Zdenek, Hadjilooei Farimah, Lalbakhsh Pedram, Jamshidi Morteza, Spada Luigi La, Mirmozafari Mirhamed, Dehghani Mojgan, Sabet Asal, Roshani Saeed, Roshani Sobhan, Bayat-Makou Nima, Mohamadzade Bahare, Malek Zahra, Jamshidi Alireza, Kiani Sarah, Hashemi-Dezaki Hamed, Mohyuddin Wahab

机构信息

Department of Electromechanical Engineering and Power Electronics (KEV)University of West Bohemia in Pilsen301 00PilsenCzech Republic.

School of EngineeringMacquarie UniversitySydneyNSW2109Australia.

出版信息

IEEE Access. 2020 Jun 12;8:109581-109595. doi: 10.1109/ACCESS.2020.3001973. eCollection 2020.

Abstract

COVID-19 outbreak has put the whole world in an unprecedented difficult situation bringing life around the world to a frightening halt and claiming thousands of lives. Due to COVID-19's spread in 212 countries and territories and increasing numbers of infected cases and death tolls mounting to 5,212,172 and 334,915 (as of May 22 2020), it remains a real threat to the public health system. This paper renders a response to combat the virus through Artificial Intelligence (AI). Some Deep Learning (DL) methods have been illustrated to reach this goal, including Generative Adversarial Networks (GANs), Extreme Learning Machine (ELM), and Long/Short Term Memory (LSTM). It delineates an integrated bioinformatics approach in which different aspects of information from a continuum of structured and unstructured data sources are put together to form the user-friendly platforms for physicians and researchers. The main advantage of these AI-based platforms is to accelerate the process of diagnosis and treatment of the COVID-19 disease. The most recent related publications and medical reports were investigated with the purpose of choosing inputs and targets of the network that could facilitate reaching a reliable Artificial Neural Network-based tool for challenges associated with COVID-19. Furthermore, there are some specific inputs for each platform, including various forms of the data, such as clinical data and medical imaging which can improve the performance of the introduced approaches toward the best responses in practical applications.

摘要

新冠疫情使全球陷入了前所未有的困境,让世界各地的生活陷入令人恐惧的停滞状态,并夺走了数千人的生命。由于新冠病毒在212个国家和地区传播,感染病例和死亡人数不断增加,截至2020年5月22日已分别达到5212172例和334915例,它仍然对公共卫生系统构成切实威胁。本文提出了通过人工智能(AI)抗击该病毒的应对措施。文中阐述了一些深度学习(DL)方法来实现这一目标,包括生成对抗网络(GANs)、极限学习机(ELM)和长短期记忆网络(LSTM)。它描绘了一种综合生物信息学方法,即将来自连续结构化和非结构化数据源的不同信息方面整合在一起,为医生和研究人员形成用户友好型平台。这些基于人工智能的平台的主要优势在于加速新冠疾病的诊断和治疗过程。为了选择网络的输入和目标,以便能够开发出一种可靠的基于人工神经网络的工具来应对与新冠病毒相关的挑战,对最新的相关出版物和医学报告进行了研究。此外,每个平台都有一些特定的输入,包括各种形式的数据,如临床数据和医学影像,这可以提高所介绍方法在实际应用中的最佳响应性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c88/8043506/d6e1a666ae87/jamsh1-3001973.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验