Rage Uday Kiran, Kattumuri Vanitha, Pogaku Arjun Chakravarthi
The University of Aizu, Ikkimachi, Aizu-Wakamatsu, 965-8580, Fukushima, Japan.
The University of Aizu, Aizu-Wakamatsu, 965-8580, Fukushima, Japan.
Sci Data. 2025 Jun 16;12(1):1009. doi: 10.1038/s41597-025-05195-2.
Air pollution is a leading risk factor for mortality in Japan. Despite improvements in air quality, Particulate Matter 2.5 (PM) remains a significant concern due to its severe health impacts. Although previous studies have analyzed PM trends in Japan, they often overlook regions consistently exposed to high PM levels, primarily due to the lack of comprehensive, high-quality datasets. To address this gap, we developed a large-scale dataset containing five years of hourly PM measurements from approximately 1,900 sensors across Japan. The dataset employs an ER-Schema that isolates PM data, ensuring a focused analysis by excluding other pollutants. This extensive temporal and spatial coverage enables a more precise examination of long-term PM exposure patterns. Finally, we validated the dataset by applying established pattern mining models, demonstrating its effectiveness in identifying regions with consistently high PM levels. The proposed dataset provides a valuable resource for air quality research, supporting the development of targeted mitigation strategies and enhancing understanding of pollution dynamics in Japan.
空气污染是日本死亡率的主要风险因素。尽管空气质量有所改善,但细颗粒物2.5(PM)因其对健康的严重影响仍然是一个重大问题。虽然之前的研究分析了日本的PM趋势,但它们往往忽略了持续暴露于高PM水平的地区,主要原因是缺乏全面、高质量的数据集。为了填补这一空白,我们开发了一个大规模数据集,其中包含来自日本各地约1900个传感器的五年每小时PM测量数据。该数据集采用了一种ER模式来隔离PM数据,通过排除其他污染物确保进行重点分析。这种广泛的时间和空间覆盖使得能够更精确地研究长期PM暴露模式。最后,我们通过应用既定的模式挖掘模型对数据集进行了验证,证明了其在识别PM水平持续较高地区方面的有效性。所提出的数据集为空气质量研究提供了宝贵资源,支持制定有针对性的缓解策略,并增进对日本污染动态的理解。