MIT Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Harvard Medical School, Boston, MA, USA.
Sci Robot. 2021 Aug 18;6(57). doi: 10.1126/scirobotics.abg0656.
We live in an era of wearable sensing, where our movement through the world can be continuously monitored by devices. Yet, we lack a portable sensor that can continuously monitor muscle, tendon, and bone motion, allowing us to monitor performance, deliver targeted rehabilitation, and provide intuitive, reflexive control over prostheses and exoskeletons. Here, we introduce a sensing modality, magnetomicrometry, that uses the relative positions of implanted magnetic beads to enable wireless tracking of tissue length changes. We demonstrate real-time muscle length tracking in an in vivo turkey model via chronically implanted magnetic beads while investigating accuracy, biocompatibility, and long-term implant stability. We anticipate that this tool will lay the groundwork for volitional control over wearable robots via real-time tracking of muscle lengths and speeds. Further, to inform future biomimetic control strategies, magnetomicrometry may also be used in the in vivo tracking of biological tissues to elucidate biomechanical principles of animal and human movement.
我们生活在可穿戴传感的时代,我们在这个世界中的运动可以被设备持续监测。然而,我们缺乏一种便携式传感器,它可以持续监测肌肉、肌腱和骨骼的运动,使我们能够监测性能、提供有针对性的康复治疗,并对假肢和外骨骼进行直观、反射式控制。在这里,我们引入了一种传感模式,磁测微术,它利用植入磁珠的相对位置来实现组织长度变化的无线跟踪。我们通过慢性植入的磁珠在活体火鸡模型中演示了实时肌肉长度跟踪,同时研究了准确性、生物相容性和长期植入稳定性。我们预计,通过实时跟踪肌肉长度和速度,这种工具将为可穿戴机器人的自主控制奠定基础。此外,为了为未来的仿生控制策略提供信息,磁测微术也可以用于生物组织的体内跟踪,以阐明动物和人类运动的生物力学原理。