Suppr超能文献

基于荧光共振能量转移的张力传感器揭示了髓鞘形成过程中纤维直径相关的力学因素。

Tension Sensor Based on Fluorescence Resonance Energy Transfer Reveals Fiber Diameter-Dependent Mechanical Factors During Myelination.

作者信息

Shimizu Takeshi, Murakoshi Hideji, Matsumoto Hidetoshi, Ichino Kota, Hattori Atsunori, Ueno Shinya, Ishida Akimasa, Tajiri Naoki, Hida Hideki

机构信息

Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.

Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.

出版信息

Front Cell Neurosci. 2021 Aug 2;15:685044. doi: 10.3389/fncel.2021.685044. eCollection 2021.

Abstract

Oligodendrocytes (OLs) form a myelin sheath around neuronal axons to increase conduction velocity of action potential. Although both large and small diameter axons are intermingled in the central nervous system (CNS), the number of myelin wrapping is related to the axon diameter, such that the ratio of the diameter of the axon to that of the entire myelinated-axon unit is optimal for each axon, which is required for exerting higher brain functions. This indicates there are unknown axon diameter-dependent factors that control myelination. We tried to investigate physical factors to clarify the mechanisms underlying axon diameter-dependent myelination. To visualize OL-generating forces during myelination, a tension sensor based on fluorescence resonance energy transfer (FRET) was used. Polystyrene nanofibers with varying diameters similar to neuronal axons were prepared to investigate biophysical factors regulating the OL-axon interactions. We found that higher tension was generated at OL processes contacting larger diameter fibers compared with smaller diameter fibers. Additionally, OLs formed longer focal adhesions (FAs) on larger diameter axons and shorter FAs on smaller diameter axons. These results suggest that OLs respond to the fiber diameter and activate mechanotransduction initiated at FAs, which controls their cytoskeletal organization and myelin formation. This study leads to the novel and interesting idea that physical factors are involved in myelin formation in response to axon diameter.

摘要

少突胶质细胞(OLs)在神经元轴突周围形成髓鞘,以提高动作电位的传导速度。尽管中枢神经系统(CNS)中大小直径的轴突相互交织,但髓鞘包裹的数量与轴突直径相关,使得轴突直径与整个有髓鞘轴突单元直径的比例对于每个轴突而言是最佳的,这是发挥高级脑功能所必需的。这表明存在未知的轴突直径依赖性因素控制髓鞘形成。我们试图研究物理因素以阐明轴突直径依赖性髓鞘形成的潜在机制。为了可视化髓鞘形成过程中OL产生的力,使用了基于荧光共振能量转移(FRET)的张力传感器。制备了具有与神经元轴突相似的不同直径的聚苯乙烯纳米纤维,以研究调节OL-轴突相互作用的生物物理因素。我们发现,与较小直径的纤维相比,在与较大直径纤维接触的OL过程中产生了更高的张力。此外,OL在较大直径的轴突上形成更长的粘着斑(FAs),而在较小直径的轴突上形成较短的FAs。这些结果表明,OL对纤维直径作出反应,并激活从FAs起始的机械转导,从而控制其细胞骨架组织和髓鞘形成。这项研究引出了一个新颖有趣的观点,即物理因素参与了对轴突直径作出反应的髓鞘形成过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663c/8364977/d6e6a5b73fbe/fncel-15-685044-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验