Suppr超能文献

基因组解析宏基因组学揭示了氧化还原振荡泥炭中未培养酸杆菌的功能生态学。

Genome-Resolved Metagenomics Informs the Functional Ecology of Uncultured Acidobacteria in Redox Oscillated Peat.

机构信息

Department of Geosciences, Princeton University, Princeton, New Jersey, USA.

High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA.

出版信息

mSystems. 2022 Oct 26;7(5):e0005522. doi: 10.1128/msystems.00055-22. Epub 2022 Aug 29.

Abstract

Understanding microbial niche differentiation along ecological and geochemical gradients is critical for assessing the mechanisms of ecosystem response to hydrologic variation and other aspects of global change. The lineage-specific biogeochemical roles of the widespread phylum Acidobacteria in hydrologically sensitive ecosystems, such as peatlands, are poorly understood. Here, we demonstrate that Acidobacteria sublineages in peat respond differentially to redox fluctuations due to variable oxygen (O) availability, a typical feature of hydrologic variation. Our genome-centric approach disentangles the mechanisms of niche differentiation between the Acidobacteria genera and in response to the transient O exposure of peat in laboratory incubations. Interlineage functional diversification explains the enrichment of the otherwise rare in anoxic peat after transient O exposure in comparison to dominance in continuously anoxic peat. The observed niche differentiation of the two lineages is linked to differences in their carbon degradation potential. appear to be primarily reliant on carbohydrate oligomers and amino acids, produced during the prior period of O exposure via the O-stimulated breakdown of peat carbon, rich in complex aromatics and carbohydrate polymers. In contrast, genomes are enriched in diverse respiratory hydrogenases and carbohydrate active enzymes, enabling the degradation of complex plant polysaccharides into monomers and oligomers for fermentation. We also present the first evidence for the potential contribution of Acidobacteria in peat nitrogen fixation. In addition to canonical molybdenum-based diazotrophy, the Acidobacteria genomes harbor vanadium and iron-only alternative nitrogenases. Together, the results better inform the different functional roles of Acidobacteria in peat biogeochemistry under global change. Acidobacteria are among the most widespread and abundant members of the soil bacterial community, yet their ecophysiology remains largely underexplored. In acidic peat systems, Acidobacteria are thought to perform key biogeochemical functions, yet the mechanistic links between the phylogenetic and metabolic diversity within this phylum and peat carbon transformations remain unclear. Here, we employ genomic comparisons of Acidobacteria subgroups enriched in laboratory incubations of peat under variable O availability to disentangle the lineage-specific functional roles of these microorganisms in peat carbon transformations. Our genome-centric approach reveals that the diversification of Acidobacteria subpopulations across transient O exposure is linked to differences in their carbon substrate preferences. We also identify a previously unknown functional potential for biological nitrogen fixation in these organisms. This has important implications for carbon, nitrogen, and trace metal cycling in peat systems.

摘要

了解微生物生态位沿生态和地球化学梯度的分化对于评估生态系统对水文变化和其他全球变化方面的响应机制至关重要。在水文敏感受体(如泥炭地)中,广泛存在的酸杆菌门的生物地球化学作用具有谱系特异性,但人们对此了解甚少。在这里,我们证明了泥炭中的酸杆菌亚群对由于氧气(O)可用性变化而导致的氧化还原波动表现出不同的反应,这是水文变化的一个典型特征。我们的基于基因组的方法分离了酸杆菌属在实验室培养中对泥炭中 O 短暂暴露的反应的种间和种内生态位分化机制。谱系间的功能多样化解释了在 O 短暂暴露后,原本罕见的属在缺氧泥炭中的富集,而属在持续缺氧泥炭中的优势。观察到的两个谱系的生态位分化与它们的碳降解潜力的差异有关。属似乎主要依赖于碳水化合物低聚物和氨基酸,这些物质是通过 O 刺激泥炭碳分解在前一 O 暴露期间产生的,富含复杂的芳烃和碳水化合物聚合物。相比之下,属的基因组富含各种呼吸氢化酶和碳水化合物活性酶,能够将复杂的植物多糖降解为单体和低聚物进行发酵。我们还首次提供了酸杆菌在泥炭固氮中潜在贡献的证据。除了典型的钼基固氮作用外,酸杆菌基因组还具有钒和铁固氮酶。总之,这些结果更好地说明了在全球变化下酸杆菌在泥炭生物地球化学中不同的功能作用。酸杆菌是土壤细菌群落中分布最广泛、最丰富的成员之一,但它们的生理生态学仍在很大程度上未被探索。在酸性泥炭系统中,酸杆菌被认为具有关键的生物地球化学功能,但该门内的系统发育和代谢多样性与泥炭碳转化之间的机制联系尚不清楚。在这里,我们利用在可变 O 可用性下实验室培养的泥炭中富集的酸杆菌亚群的基因组比较,来分离这些微生物在泥炭碳转化中的种间特异性功能作用。我们的基于基因组的方法表明,酸杆菌亚群在 O 短暂暴露时的多样化与它们对碳底物偏好的差异有关。我们还确定了这些生物体中以前未知的生物固氮功能潜力。这对泥炭系统中的碳、氮和痕量金属循环具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d081/9599518/fc050863b312/msystems.00055-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验