Suppr超能文献

贝叶斯非参数动态项目反应建模方法:在 GUSTO 队列研究中的应用。

A Bayesian nonparametric approach to dynamic item-response modeling: An application to the GUSTO cohort study.

机构信息

Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore.

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Stat Med. 2021 Nov 30;40(27):6021-6037. doi: 10.1002/sim.9167. Epub 2021 Aug 19.

Abstract

Statistical analysis of questionnaire data is often performed employing techniques from item-response theory. In this framework, it is possible to differentiate respondent profiles and characterize the questions (items) included in the questionnaire via interpretable parameters. These models are often crosssectional and aim at evaluating the performance of the respondents. The motivating application of this work is the analysis of psychometric questionnaires taken by a group of mothers at different time points and by their children at one later time point. The data are available through the GUSTO cohort study. To this end, we propose a Bayesian semiparametric model and extend the current literature by: (i) introducing temporal dependence among questionnaires taken at different time points; (ii) jointly modeling the responses to questionnaires taken from different, but related, groups of subjects (in our case mothers and children), introducing a further dependency structure and therefore sharing of information; (iii) allowing clustering of subjects based on their latent response profile. The proposed model is able to identify three main groups of mother/child pairs characterized by their response profiles. Furthermore, we report an interesting maternal reporting bias effect strongly affecting the clustering structure of the mother/child dyads.

摘要

问卷调查数据的统计分析通常采用项目反应理论的技术进行。在这个框架中,可以通过可解释的参数来区分受访者的特征,并描述问卷中包含的问题(项目)。这些模型通常是横截面的,旨在评估受访者的表现。这项工作的动机应用是分析一组母亲在不同时间点和他们的孩子在稍后一个时间点接受的心理计量学问卷。这些数据可通过 GUSTO 队列研究获得。为此,我们提出了一个贝叶斯半参数模型,并通过以下方式扩展了当前文献:(i)引入了在不同时间点进行的问卷之间的时间依赖性;(ii)联合建模来自不同但相关的受试者群体(在我们的情况下是母亲和孩子)的问卷的响应,引入了进一步的依赖结构,因此共享信息;(iii)允许根据受试者的潜在响应特征对受试者进行聚类。所提出的模型能够识别出三个主要的母亲/孩子对群体,其特征是他们的响应特征。此外,我们报告了一个有趣的母亲报告偏差效应,该效应强烈影响了母亲/孩子对子的聚类结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ab9/9546363/bea82df1db7d/SIM-40-6021-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验