Kaptanoglu Alan A, Morgan Kyle D, Hansen Chris J, Brunton Steven L
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA.
Phys Rev E. 2021 Jul;104(1-2):015206. doi: 10.1103/PhysRevE.104.015206.
Plasmas are highly nonlinear and multiscale, motivating a hierarchy of models to understand and describe their behavior. However, there is a scarcity of plasma models of lower fidelity than magnetohydrodynamics (MHD), although these reduced models hold promise for understanding key physical mechanisms, efficient computation, and real-time optimization and control. Galerkin models, obtained by projection of the MHD equations onto a truncated modal basis, and data-driven models, obtained by modern machine learning and system identification, can furnish this gap in the lower levels of the model hierarchy. This work develops a reduced-order modeling framework for compressible plasmas, leveraging decades of progress in projection-based and data-driven modeling of fluids. We begin by formalizing projection-based model reduction for nonlinear MHD systems. To avoid separate modal decompositions for the magnetic, velocity, and pressure fields, we introduce an energy inner product to synthesize all of the fields into a dimensionally consistent, reduced-order basis. Next, we obtain an analytic model by Galerkin projection of the Hall-MHD equations onto these modes. We illustrate how global conservation laws constrain the model parameters, revealing symmetries that can be enforced in data-driven models, directly connecting these models to the underlying physics. We demonstrate the effectiveness of this approach on data from high-fidelity numerical simulations of a three-dimensional spheromak experiment. This manuscript builds a bridge to the extensive Galerkin literature in fluid mechanics and facilitates future principled development of projection-based and data-driven models for plasmas.
等离子体具有高度非线性和多尺度性,这促使人们构建一系列模型来理解和描述其行为。然而,与磁流体动力学(MHD)相比,低精度的等离子体模型较为稀缺,尽管这些简化模型有望帮助理解关键物理机制、进行高效计算以及实现实时优化与控制。通过将MHD方程投影到截断模态基上得到的伽辽金模型,以及通过现代机器学习和系统识别得到的数据驱动模型,可以填补模型层次结构较低层级的这一空白。这项工作利用流体基于投影和数据驱动建模方面数十年的进展,为可压缩等离子体开发了一种降阶建模框架。我们首先对非线性MHD系统基于投影的模型降阶进行形式化。为避免对磁场、速度场和压力场进行单独的模态分解,我们引入一种能量内积,将所有场综合成一个维度一致的降阶基。接下来,我们通过将霍尔 - MHD方程投影到这些模态上得到一个解析模型。我们说明了全局守恒定律如何约束模型参数,揭示了可在数据驱动模型中强制实施的对称性,直接将这些模型与基础物理联系起来。我们在三维球形磁笼实验的高保真数值模拟数据上展示了这种方法的有效性。本文为流体力学中广泛的伽辽金文献搭建了一座桥梁,并促进了未来基于投影和数据驱动的等离子体模型的原则性发展。