Suppr超能文献

CircleNet:基于圆形表示的无锚点肾小球检测

CircleNet: Anchor-free Glomerulus Detection with Circle Representation.

作者信息

Yang Haichun, Deng Ruining, Lu Yuzhe, Zhu Zheyu, Chen Ye, Roland Joseph T, Lu Le, Landman Bennett A, Fogo Agnes B, Huo Yuankai

机构信息

Vanderbilt University Medical Center, Nashville TN 37215, USA.

Vanderbilt University, Nashville TN 37215, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020;2020:35-44. doi: 10.1007/978-3-030-59719-1_4. Epub 2020 Sep 29.

Abstract

Object detection networks are powerful in computer vision, but not necessarily optimized for biomedical object detection. In this work, we propose CircleNet, a simple anchor-free detection method with circle representation for detection of the ball-shaped glomerulus. Different from the traditional bounding box based detection method, the bounding circle (1) reduces the degrees of freedom of detection representation, (2) is naturally rotation invariant, (3) and optimized for ball-shaped objects. The key innovation to enable this representation is the anchor-free framework with the circle detection head. We evaluate CircleNet in the context of detection of glomerulus. CircleNet increases average precision of the glomerulus detection from 0.598 to 0.647. Another key advantage is that CircleNet achieves better rotation consistency compared with bounding box representations.

摘要

目标检测网络在计算机视觉中功能强大,但不一定针对生物医学目标检测进行了优化。在这项工作中,我们提出了CircleNet,这是一种简单的无锚检测方法,采用圆形表示来检测球形肾小球。与传统的基于边界框的检测方法不同,边界圆(1)减少了检测表示的自由度,(2)具有自然的旋转不变性,(3)并且针对球形物体进行了优化。实现这种表示的关键创新在于带有圆形检测头的无锚框架。我们在肾小球检测的背景下评估了CircleNet。CircleNet将肾小球检测的平均精度从0.598提高到了0.647。另一个关键优势是,与边界框表示相比,CircleNet实现了更好的旋转一致性。

相似文献

1
CircleNet: Anchor-free Glomerulus Detection with Circle Representation.CircleNet:基于圆形表示的无锚点肾小球检测
Med Image Comput Comput Assist Interv. 2020;2020:35-44. doi: 10.1007/978-3-030-59719-1_4. Epub 2020 Sep 29.
2
Circle Representation for Medical Object Detection.用于医学对象检测的圆形表示法。
IEEE Trans Med Imaging. 2022 Mar;41(3):746-754. doi: 10.1109/TMI.2021.3122835. Epub 2022 Mar 2.
6
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection.用于多方向目标检测的水平边界框上的滑动顶点
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1452-1459. doi: 10.1109/TPAMI.2020.2974745. Epub 2021 Mar 5.
8
AFP-Mask: Anchor-Free Polyp Instance Segmentation in Colonoscopy.AFP-Mask:结肠镜检查中的无锚定息肉实例分割。
IEEE J Biomed Health Inform. 2022 Jul;26(7):2995-3006. doi: 10.1109/JBHI.2022.3147686. Epub 2022 Jul 1.

引用本文的文献

5
Computational pathology: A survey review and the way forward.计算病理学:综述与未来发展方向
J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec.
10
Circle Representation for Medical Object Detection.用于医学对象检测的圆形表示法。
IEEE Trans Med Imaging. 2022 Mar;41(3):746-754. doi: 10.1109/TMI.2021.3122835. Epub 2022 Mar 2.

本文引用的文献

1
Glomerulosclerosis identification in whole slide images using semantic segmentation.使用语义分割识别全切片图像中的肾小球硬化。
Comput Methods Programs Biomed. 2020 Feb;184:105273. doi: 10.1016/j.cmpb.2019.105273. Epub 2019 Dec 19.
2
Computational Segmentation and Classification of Diabetic Glomerulosclerosis.糖尿病肾小球硬化的计算分割与分类。
J Am Soc Nephrol. 2019 Oct;30(10):1953-1967. doi: 10.1681/ASN.2018121259. Epub 2019 Sep 5.
3
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.使用深度学习对三色图像中的肾小球进行分割。
Kidney Int Rep. 2019 Apr 15;4(7):955-962. doi: 10.1016/j.ekir.2019.04.008. eCollection 2019 Jul.
4
CNN cascades for segmenting sparse objects in gigapixel whole slide images.CNN 级联用于分割千兆像素全幻灯片图像中的稀疏对象。
Comput Med Imaging Graph. 2019 Jan;71:40-48. doi: 10.1016/j.compmedimag.2018.11.002. Epub 2018 Nov 16.
6
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
7
Measurement of glomerulus diameter and Bowman's space width of renal albino rats.测量白化病大鼠肾小球直径和鲍曼氏囊腔宽度。
Comput Methods Programs Biomed. 2016 Apr;126:143-53. doi: 10.1016/j.cmpb.2015.10.023. Epub 2015 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验