Ginley Brandon, Tomaszewski John E, Yacoub Rabi, Chen Feng, Sarder Pinaki
University at Buffalo-The State University of New York , Departments of Pathology and Anatomical Sciences, 207 Farber Hall, 3435 Main Street Buffalo, New York 14214, United States.
University at Buffalo-The State University of New York, Departments of Pathology and Anatomical Sciences, 207 Farber Hall, 3435 Main Street Buffalo, New York 14214, United States; University at Buffalo-The State University of New York, Departments of Biomedical Informatics, 207 Farber Hall, 3435 Main Street Buffalo, New York 14214, United States.
J Med Imaging (Bellingham). 2017 Apr;4(2):021102. doi: 10.1117/1.JMI.4.2.021102. Epub 2017 Feb 28.
The glomerulus is the blood filtering unit of the kidney. Each human kidney contains [Formula: see text] glomeruli. Several renal conditions originate from structural damage to glomerular microcompartments, such as proteinuria, the excessive loss of blood proteins into urine. The gold standard for evaluating structural damage in renal pathology is histopathological and immunofluorescence examination of needle biopsies under a light microscope. This method is limited by qualitative or semiquantitative manual scoring approaches to the evaluation of glomerular structural features. Computational quantification of equivalent features promises to improve the precision of glomerular structural analysis. One large obstacle to the computational quantification of renal tissue is the identification of complex glomerular boundaries automatically. To mitigate this issue, we developed a computational pipeline capable of extracting and exactly defining glomerular boundaries. Our method, composed of Gabor filtering, Gaussian blurring, statistical [Formula: see text]-testing, and distance transform, is able to accurately identify glomerular boundaries with mean sensitivity/specificity of [Formula: see text] and accuracy of 0.92, on [Formula: see text] glomeruli images stained with standard renal histological stains. Our method will simplify computational partitioning of glomerular microcompartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic and can pioneer real-time diagnoses and interventions for renal care.
肾小球是肾脏的血液过滤单位。每个人类肾脏包含[公式:见文本]个肾小球。几种肾脏疾病起源于肾小球微区室的结构损伤,例如蛋白尿,即血液蛋白质过度流失到尿液中。评估肾脏病理学中结构损伤的金标准是在光学显微镜下对穿刺活检进行组织病理学和免疫荧光检查。这种方法受限于对肾小球结构特征评估采用定性或半定量的手动评分方法。等效特征的计算量化有望提高肾小球结构分析的精度。肾脏组织计算量化的一个大障碍是自动识别复杂的肾小球边界。为缓解这个问题,我们开发了一种能够提取并精确界定肾小球边界的计算流程。我们的方法由伽柏滤波、高斯模糊、统计[公式:见文本]检验和距离变换组成,可以在[公式:见文本]张用标准肾脏组织学染色剂染色的肾小球图像上,以平均灵敏度/特异性为[公式:见文本]以及准确率为0.92,准确识别肾小球边界。我们的方法将简化隐藏在密集纹理边界内的肾小球微区室的计算划分。肾小球的自动量化将简化临床中的结构分析,并可为肾脏护理的实时诊断和干预开辟道路。