Suppr超能文献

用于医学对象检测的圆形表示法。

Circle Representation for Medical Object Detection.

出版信息

IEEE Trans Med Imaging. 2022 Mar;41(3):746-754. doi: 10.1109/TMI.2021.3122835. Epub 2022 Mar 2.

Abstract

Box representation has been extensively used for object detection in computer vision. Such representation is efficacious but not necessarily optimized for biomedical objects (e.g., glomeruli), which play an essential role in renal pathology. In this paper, we propose a simple circle representation for medical object detection and introduce CircleNet, an anchor-free detection framework. Compared with the conventional bounding box representation, the proposed bounding circle representation innovates in three-fold: (1) it is optimized for ball-shaped biomedical objects; (2) The circle representation reduced the degree of freedom compared with box representation; (3) It is naturally more rotation invariant. When detecting glomeruli and nuclei on pathological images, the proposed circle representation achieved superior detection performance and be more rotation-invariant, compared with the bounding box. The code has been made publicly available: https://github.com/hrlblab/CircleNet.

摘要

盒子表示法在计算机视觉中的目标检测中得到了广泛的应用。这种表示方法是有效的,但不一定针对生物医学对象(例如肾小球)进行了优化,肾小球在肾脏病理学中起着至关重要的作用。在本文中,我们提出了一种简单的圆形表示法来进行医学对象检测,并介绍了 CircleNet,这是一种无锚点检测框架。与传统的边界框表示法相比,所提出的边界圆表示法在三个方面进行了创新:(1)它针对球形生物医学对象进行了优化;(2)与边界框相比,圆表示法减少了自由度;(3)它自然具有更高的旋转不变性。在对病理图像中的肾小球和细胞核进行检测时,与边界框相比,所提出的圆形表示法具有更好的检测性能和更高的旋转不变性。该代码已在 https://github.com/hrlblab/CircleNet 上公开。

相似文献

1
Circle Representation for Medical Object Detection.用于医学对象检测的圆形表示法。
IEEE Trans Med Imaging. 2022 Mar;41(3):746-754. doi: 10.1109/TMI.2021.3122835. Epub 2022 Mar 2.
2
CircleNet: Anchor-free Glomerulus Detection with Circle Representation.CircleNet:基于圆形表示的无锚点肾小球检测
Med Image Comput Comput Assist Interv. 2020;2020:35-44. doi: 10.1007/978-3-030-59719-1_4. Epub 2020 Sep 29.
4
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection.用于多方向目标检测的水平边界框上的滑动顶点
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1452-1459. doi: 10.1109/TPAMI.2020.2974745. Epub 2021 Mar 5.
7
Tiny Object Tracking: A Large-Scale Dataset and a Baseline.微小物体跟踪:一个大规模数据集及基线
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10273-10287. doi: 10.1109/TNNLS.2023.3239529. Epub 2024 Aug 5.
8
Co-Salient Object Detection With Co-Representation Purification.基于协同表示纯化的协同显著目标检测。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8193-8205. doi: 10.1109/TPAMI.2023.3234586. Epub 2023 Jun 5.

引用本文的文献

6
Computational pathology: A survey review and the way forward.计算病理学:综述与未来发展方向
J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec.

本文引用的文献

2
CircleNet: Anchor-free Glomerulus Detection with Circle Representation.CircleNet:基于圆形表示的无锚点肾小球检测
Med Image Comput Comput Assist Interv. 2020;2020:35-44. doi: 10.1007/978-3-030-59719-1_4. Epub 2020 Sep 29.
3
AI applications in renal pathology.人工智能在肾病理学中的应用。
Kidney Int. 2021 Jun;99(6):1309-1320. doi: 10.1016/j.kint.2021.01.015. Epub 2021 Feb 10.
4
Glomerulosclerosis identification in whole slide images using semantic segmentation.使用语义分割识别全切片图像中的肾小球硬化。
Comput Methods Programs Biomed. 2020 Feb;184:105273. doi: 10.1016/j.cmpb.2019.105273. Epub 2019 Dec 19.
5
A Multi-Organ Nucleus Segmentation Challenge.多器官细胞核分割挑战赛
IEEE Trans Med Imaging. 2020 May;39(5):1380-1391. doi: 10.1109/TMI.2019.2947628. Epub 2019 Oct 23.
7
Computational Segmentation and Classification of Diabetic Glomerulosclerosis.糖尿病肾小球硬化的计算分割与分类。
J Am Soc Nephrol. 2019 Oct;30(10):1953-1967. doi: 10.1681/ASN.2018121259. Epub 2019 Sep 5.
8
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.使用深度学习对三色图像中的肾小球进行分割。
Kidney Int Rep. 2019 Apr 15;4(7):955-962. doi: 10.1016/j.ekir.2019.04.008. eCollection 2019 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验