Interdisciplinary Materials Science & Engineering Program, Vanderbilt University, Tennessee 37235-0106, United States.
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee 37235-1604, United States.
Langmuir. 2021 Sep 7;37(35):10481-10489. doi: 10.1021/acs.langmuir.1c01385. Epub 2021 Aug 24.
The design of electrode interfaces to achieve efficient electron transfer to biomolecules is important in many bioelectrochemical processes. Within the field of biohybrid solar energy conversion, constructing multilayered Photosystem I (PSI) protein films that maintain good electronic connection to an underlying electrode has been a major challenge. Previous shortcomings include low loadings, long deposition times, and poor connection between PSI and conducting polymers within composite films. Here, we show that PSI protein complexes can be deposited into monolayers within a 30 min timespan by leveraging the electrostatic interactions between the protein complex and the poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) polymer. Further, we follow a layer-by-layer (LBL) deposition procedure to produce up to 9-layer pairs of PSI and PEDOT:PSS with highly reproducible layer thicknesses as well as distinct changes in surface composition. When tested in an electrochemical cell employing ubiquinone-0 as a mediator, the photocurrent performance of the LBL films increased linearly by 83 ± 6 nA/cm per PSI layer up to 6-layer pairs. The 6-layer pair samples yielded a photocurrent of 414 ± 13 nA/cm, after which the achieved photocurrent diminished with additional layer pairs. The turnover number (TN) of the PSI-PEDOT:PSS LBL assemblies also greatly exceeds that of drop-casted PSI multilayer films, highlighting that the rate of electron collection is improved through the systematic deposition of the protein complexes and conducting polymer. The capability to deposit high loadings of PSI between PEDOT:PSS layers, while retaining connection to the underlying electrode, shows the value in using LBL assembly to produce PSI and PEDOT:PSS bioelectrodes for photoelectrochemical energy harvesting applications.
设计电极界面以实现生物分子的高效电子转移在许多生物电化学过程中都很重要。在生物混合太阳能转换领域,构建能够与底层电极保持良好电子连接的多层 Photosystem I(PSI)蛋白膜一直是一个主要挑战。以前的缺点包括负载量低、沉积时间长以及复合膜中 PSI 和导电聚合物之间的连接不良。在这里,我们展示了 PSI 蛋白复合物可以在 30 分钟内通过利用蛋白复合物和聚(3,4-亚乙基二氧噻吩)-聚苯乙烯磺酸盐(PEDOT:PSS)聚合物之间的静电相互作用沉积成单层。此外,我们采用层层(LBL)沉积程序,最多可生产 9 对 PSI 和 PEDOT:PSS 层,具有高度可重复的层厚以及明显不同的表面组成变化。当在采用泛醌-0 作为介体的电化学电池中进行测试时,LBL 膜的光电流性能线性增加 83±6 nA/cm 每 PSI 层,最高可达 6 对。6 对 PSI 层对的样品产生了 414±13 nA/cm 的光电流,之后,随着附加层对的增加,所获得的光电流减小。PSI-PEDOT:PSS LBL 组件的周转数(TN)也大大超过了滴铸 PSI 多层膜,这突出表明通过系统沉积蛋白复合物和导电聚合物,电子收集速率得到了提高。在 PEDOT:PSS 层之间沉积高负载量的 PSI 同时保留与底层电极的连接能力,表明使用 LBL 组装来生产 PSI 和 PEDOT:PSS 生物电极用于光电化学能量收集应用具有价值。