Martín-Jiménez Alberto, Fernández-Domínguez Antonio I, Lauwaet Koen, Granados Daniel, Miranda Rodolfo, García-Vidal Francisco J, Otero Roberto
IMDEA Nanociencia, Madrid, Spain.
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
Nat Commun. 2020 Feb 24;11(1):1021. doi: 10.1038/s41467-020-14827-7.
Atomically-sharp tips in close proximity of metal surfaces create plasmonic nanocavities supporting both radiative (bright) and non-radiative (dark) localized surface plasmon modes. Disentangling their respective contributions to the total density of optical states remains a challenge. Electroluminescence due to tunnelling through the tip-substrate gap could allow the identification of the radiative component, but this information is inherently convoluted with that of the electronic structure of the system. In this work, we present a fully experimental procedure to eliminate the electronic-structure factors from the scanning tunnelling microscope luminescence spectra by confronting them with spectroscopic information extracted from elastic current measurements. Comparison against electromagnetic calculations demonstrates that this procedure allows the characterization of the meV shifts experienced by the nanocavity plasmonic modes under atomic-scale gap size changes. Therefore, the method gives access to the frequency-dependent radiative Purcell enhancement that a microscopic light emitter would undergo when placed at such nanocavity.
金属表面附近的原子级尖锐尖端会产生等离子体纳米腔,支持辐射(明亮)和非辐射(暗)局部表面等离子体模式。区分它们对光学态总密度的各自贡献仍然是一个挑战。通过尖端 - 衬底间隙的隧穿引起的电致发光可以识别辐射成分,但此信息与系统电子结构的信息固有地相互交织。在这项工作中,我们提出了一种完全实验性的程序,通过将扫描隧道显微镜发光光谱与从弹性电流测量中提取的光谱信息进行对比,来消除电子结构因素的影响。与电磁计算的比较表明,该程序能够表征纳米腔等离子体模式在原子尺度间隙尺寸变化下所经历的毫电子伏特位移。因此,该方法可以获得微观发光体放置在这种纳米腔时所经历的频率相关辐射珀塞尔增强。