文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

理论分析脉冲加热功率在乳腺癌磁热疗中的应用。

Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer.

机构信息

School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea.

Department of Electrical Engineering, Faulty of Electrical and Electronics Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam.

出版信息

Int J Mol Sci. 2021 Aug 18;22(16):8895. doi: 10.3390/ijms22168895.


DOI:10.3390/ijms22168895
PMID:34445603
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8396204/
Abstract

In magnetic hyperthermia, magnetic nanoparticles (MNPs) are used to generate heat in an alternating magnetic field to destroy cancerous cells. This field can be continuous or pulsed. Although a large amount of research has been devoted to studying the efficiency and side effects of continuous fields, little attention has been paid to the use of pulsed fields. In this simulation study, Fourier's law and COMSOL software have been utilized to identify the heating power necessary for treating breast cancer under blood flow and metabolism to obtain the optimized condition among the pulsed powers for thermal ablation. The results showed that for small source diameters (not larger than 4 mm), pulsed powers with high duties were more effective than continuous power. Although by increasing the source domain the fraction of damage caused by continuous power reached the damage caused by the pulsed powers, it affected the healthy tissues more (at least two times greater) than the pulsed powers. Pulsed powers with high duty (0.8 and 0.9) showed the optimized condition and the results have been explained based on the Arrhenius equation. Utilizing the pulsed powers for breast cancer treatment can potentially be an efficient approach for treating breast tumors due to requiring lower heating power and minimizing side effects to the healthy tissues.

摘要

在磁热疗中,磁性纳米粒子(MNPs)被用于在交变磁场中产生热量以破坏癌细胞。该场可以是连续的或脉冲的。尽管已经进行了大量研究来研究连续场的效率和副作用,但对脉冲场的应用关注甚少。在这项模拟研究中,利用傅里叶定律和 COMSOL 软件来确定在血流和代谢条件下治疗乳腺癌所需的加热功率,以获得热消融中脉冲功率的优化条件。结果表明,对于小源直径(不大于 4 毫米),高占空比的脉冲功率比连续功率更有效。虽然通过增加源域,连续功率引起的损伤分数达到了脉冲功率引起的损伤分数,但它对健康组织的影响(至少大两倍)比脉冲功率更大。高占空比(0.8 和 0.9)的脉冲功率显示出了优化的条件,并且基于阿累尼乌斯方程解释了结果。由于需要较低的加热功率并将对健康组织的副作用最小化,因此利用脉冲功率治疗乳腺癌可能是一种治疗乳腺癌肿瘤的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/1b66aa9ad781/ijms-22-08895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/0d4b877cd1f5/ijms-22-08895-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/143c096d809f/ijms-22-08895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/ebb9200b9762/ijms-22-08895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/a5ac093d942d/ijms-22-08895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/40913259e803/ijms-22-08895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/6757ae93df83/ijms-22-08895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/1b66aa9ad781/ijms-22-08895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/0d4b877cd1f5/ijms-22-08895-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/143c096d809f/ijms-22-08895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/ebb9200b9762/ijms-22-08895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/a5ac093d942d/ijms-22-08895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/40913259e803/ijms-22-08895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/6757ae93df83/ijms-22-08895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f957/8396204/1b66aa9ad781/ijms-22-08895-g007.jpg

相似文献

[1]
Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer.

Int J Mol Sci. 2021-8-18

[2]
3D in silico study of magnetic fluid hyperthermia of breast tumor using FeO magnetic nanoparticles.

J Therm Biol. 2020-7

[3]
A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.

Comput Methods Programs Biomed. 2023-6

[4]
MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.

J Therm Biol. 2016-12

[5]
Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.

ACS Appl Mater Interfaces. 2018-12-20

[6]
Synthesis and characterization of monodispersed water dispersible FeO nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition.

Sci Rep. 2018-10-3

[7]
Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.

Int J Hyperthermia. 2020-12

[8]
Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia.

Cancer Invest. 2020-9-14

[9]
Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.

Med Phys. 2013-6

[10]
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

Int J Nanomedicine. 2017-8-28

引用本文的文献

[1]
Pulsing Addition to Modulated Electro-Hyperthermia.

Bioengineering (Basel). 2024-7-17

[2]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[3]
Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects.

Cancers (Basel). 2023-3-20

[4]
Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation.

Materials (Basel). 2022-12-26

本文引用的文献

[1]
Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.

Int J Hyperthermia. 2021

[2]
Numerical simulation of the effect of necrosis area in systemic delivery of magnetic nanoparticles in hyperthermia cancer treatment.

J Therm Biol. 2020-12

[3]
Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles.

Nanomaterials (Basel). 2020-11-22

[4]
Electromagnetic Actuation System for Focused Capturing of Magnetic Particles With a Half of Static Saddle Potential Energy Configuration.

IEEE Trans Biomed Eng. 2021-3

[5]
Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy.

Sci Rep. 2020-5-4

[6]
A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia.

IEEE Trans Biomed Eng. 2021-1

[7]
Mathematical Modeling of Breast Tumor Destruction Using Fast Heating during Radiofrequency Ablation.

Materials (Basel). 2019-12-28

[8]
Ultrasound Hyperthermia Technology for Radiosensitization.

Ultrasound Med Biol. 2019-2-14

[9]
Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment.

Sci Rep. 2018-9-10

[10]
Biologically Targeted Magnetic Hyperthermia: Potential and Limitations.

Front Pharmacol. 2018-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索