文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Pulsing Addition to Modulated Electro-Hyperthermia.

作者信息

Szasz Andras

机构信息

Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary.

出版信息

Bioengineering (Basel). 2024 Jul 17;11(7):725. doi: 10.3390/bioengineering11070725.


DOI:10.3390/bioengineering11070725
PMID:39061807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11273694/
Abstract

Numerous preclinical results have been verified, and clinical results have validated the advantages of modulated electro-hyperthermia (mEHT). This method uses the nonthermal effects of the electric field in addition to thermal energy absorption. Modulation helps with precisely targeting and immunogenically destroying malignant cells, which could have a vaccination-like abscopal effect. A new additional modulation (high-power pulsing) further develops the abilities of the mEHT. My objective is to present the advantages of pulsed treatment and how it fits into the mEHT therapy. Pulsed treatment increases the efficacy of destroying the selected tumor cells; it is active deeper in the body, at least tripling the penetration of the energy delivery. Due to the constant pulse amplitude, the dosing of the absorbed energy is more controllable. The induced blood flow for reoxygenation and drug delivery is high enough but not as high as increasing the risk of the dissemination of malignant cells. The short pulses have reduced surface absorption, making the treatment safer, and the increased power in the pulses allows the reduction of the treatment time needed to provide the necessary dose.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ddd7cd348b85/bioengineering-11-00725-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/9445cfdfa930/bioengineering-11-00725-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ef821f1d13c0/bioengineering-11-00725-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/c72a751ef0b5/bioengineering-11-00725-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/2c21adf2cebf/bioengineering-11-00725-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5fbf67eaa560/bioengineering-11-00725-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/81f6e3f8dcec/bioengineering-11-00725-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/8e7ca227b03b/bioengineering-11-00725-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5701a4c4d3ba/bioengineering-11-00725-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/819aa18c8d2f/bioengineering-11-00725-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/744afc9c3883/bioengineering-11-00725-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/fa7741c548c7/bioengineering-11-00725-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/a5b73eea9bcc/bioengineering-11-00725-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/a5a0c0d25bef/bioengineering-11-00725-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/b938f7412088/bioengineering-11-00725-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/f1fbb1c64a0f/bioengineering-11-00725-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5c5e4f810483/bioengineering-11-00725-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/b0f097ce2c2b/bioengineering-11-00725-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ebbc0aeeaf9c/bioengineering-11-00725-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/fd5c7d5624de/bioengineering-11-00725-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/f71d81a83e47/bioengineering-11-00725-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/e27fb78b5d72/bioengineering-11-00725-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/dc5992469379/bioengineering-11-00725-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/e5b59a8e9235/bioengineering-11-00725-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ddd7cd348b85/bioengineering-11-00725-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/9445cfdfa930/bioengineering-11-00725-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ef821f1d13c0/bioengineering-11-00725-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/c72a751ef0b5/bioengineering-11-00725-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/2c21adf2cebf/bioengineering-11-00725-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5fbf67eaa560/bioengineering-11-00725-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/81f6e3f8dcec/bioengineering-11-00725-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/8e7ca227b03b/bioengineering-11-00725-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5701a4c4d3ba/bioengineering-11-00725-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/819aa18c8d2f/bioengineering-11-00725-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/744afc9c3883/bioengineering-11-00725-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/fa7741c548c7/bioengineering-11-00725-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/a5b73eea9bcc/bioengineering-11-00725-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/a5a0c0d25bef/bioengineering-11-00725-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/b938f7412088/bioengineering-11-00725-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/f1fbb1c64a0f/bioengineering-11-00725-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/5c5e4f810483/bioengineering-11-00725-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/b0f097ce2c2b/bioengineering-11-00725-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ebbc0aeeaf9c/bioengineering-11-00725-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/fd5c7d5624de/bioengineering-11-00725-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/f71d81a83e47/bioengineering-11-00725-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/e27fb78b5d72/bioengineering-11-00725-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/dc5992469379/bioengineering-11-00725-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/e5b59a8e9235/bioengineering-11-00725-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55c/11273694/ddd7cd348b85/bioengineering-11-00725-g024.jpg

相似文献

[1]
Pulsing Addition to Modulated Electro-Hyperthermia.

Bioengineering (Basel). 2024-7-17

[2]
Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist.

Front Oncol. 2019-11-1

[3]
Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models.

Int J Mol Sci. 2020-8-29

[4]
Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia.

BMC Cancer. 2020-6-29

[5]
Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia.

Sci Rep. 2020-6-2

[6]
Modulated Electro-Hyperthermia Supports the Effect of Gemcitabine Both in Sensitive and Resistant Pancreas Adenocarcinoma Cell Lines.

Pathol Oncol Res. 2021

[7]
Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro.

Cancer Med. 2019-6-10

[8]
Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice.

Oncol Rep. 2014-12

[9]
Effects of Modulated Electro-Hyperthermia (mEHT) on Two and Three Year Survival of Locally Advanced Cervical Cancer Patients.

Cancers (Basel). 2022-1-27

[10]
In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia.

Oncotarget. 2016-12-20

引用本文的文献

[1]
Special Issue "Electric, Magnetic, and Electromagnetic Fields in Biology and Medicine: From Mechanisms to Biomedical Applications: 2nd Edition".

Bioengineering (Basel). 2025-7-7

本文引用的文献

[1]
Pulsed High-Power Radio Frequency Energy Can Cause Non-Thermal Harmful Effects on the BRAIN.

IEEE Open J Eng Med Biol. 2024-1-17

[2]
Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation.

Cancers (Basel). 2023-6-25

[3]
Editorial: Pulsed electric field based technologies for oncology applications.

Front Oncol. 2023-3-22

[4]
Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells.

Cancers (Basel). 2022-10-30

[5]
Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field.

Cells. 2022-6-4

[6]
Heterogeneous Heat Absorption Is Complementary to Radiotherapy.

Cancers (Basel). 2022-2-11

[7]
Effects of pulse parameters on the temperature distribution of a human head exposed to the electromagnetic pulse.

Sci Rep. 2021-11-25

[8]
Application of Pulsed Electric Fields to Cancer Therapy.

Bioelectricity. 2019-3-1

[9]
Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis.

Sci Adv. 2021-8-27

[10]
Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer.

Int J Mol Sci. 2021-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索