Suppr超能文献

用于晶圆缺陷检测的集成异常探测器。

An Ensembled Anomaly Detector for Wafer Fault Detection.

机构信息

Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy.

STMicroelectronics, 95121 Catania, Italy.

出版信息

Sensors (Basel). 2021 Aug 13;21(16):5465. doi: 10.3390/s21165465.

Abstract

The production process of a wafer in the semiconductor industry consists of several phases such as a diffusion and associated defectivity test, parametric test, electrical wafer sort test, assembly and associated defectivity tests, final test, and burn-in. Among these, the fault detection phase is critical to maintain the low number and the impact of anomalies that eventually result in a yield loss. The understanding and discovery of the causes of yield detractors is a complex procedure of root-cause analysis. Many parameters are tracked for fault detection, including pressure, voltage, power, or valve status. In the majority of the cases, a fault is due to a combination of two or more parameters, whose values apparently stay within the designed and checked control limits. In this work, we propose an ensembled anomaly detector which combines together univariate and multivariate analyses of the fault detection tracked parameters. The ensemble is based on three proposed and compared balancing strategies. The experimental phase is conducted on two real datasets that have been gathered in the semiconductor industry and made publicly available. The experimental validation, also conducted to compare our proposal with other traditional anomaly detection techniques, is promising in detecting anomalies retaining high recall with a low number of false alarms.

摘要

在半导体行业中,晶圆的生产过程包括多个阶段,如扩散及相关缺陷测试、参数测试、电性晶圆测试、组装及相关缺陷测试、最终测试和老化测试。其中,故障检测阶段对于保持低异常数量和影响至关重要,否则最终会导致产量损失。了解和发现产量下降的原因是一个复杂的根本原因分析过程。许多参数都被用于故障检测,包括压力、电压、功率或阀门状态。在大多数情况下,故障是由于两个或更多参数的组合造成的,这些参数的值显然仍在设计和检查的控制限内。在这项工作中,我们提出了一种集成异常检测器,它结合了对故障检测跟踪参数的单变量和多变量分析。该集成基于三种提出并比较的平衡策略。实验阶段在两个已在半导体行业收集并公开的真实数据集上进行。实验验证也与其他传统异常检测技术进行了比较,在检测异常方面表现出色,保持了高召回率和低误报率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2654/8398345/b18ae186d317/sensors-21-05465-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验