Suppr超能文献

利用行为互联网研究空气污染如何影响人们的日常生活活动:以中国北京为例。

Using an Internet of Behaviours to Study How Air Pollution Can Affect People's Activities of Daily Living: A Case Study of Beijing, China.

机构信息

IoT Laboratory, School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.

School of Earth Sciences and Engineering, Hohai University, Nanjing 211000, China.

出版信息

Sensors (Basel). 2021 Aug 18;21(16):5569. doi: 10.3390/s21165569.

Abstract

This study aims to quantitatively model rather than to presuppose whether or not air pollution in Beijing (China) affects people's activities of daily living (ADLs) based on an Internet of Behaviours (IoB), in which IoT sensor data can signal environmental events that can change human behaviour on mass. Peoples' density distribution computed by call detail records (CDRs) and air quality data are used to build a fixed effect model (FEM) to analyse the influence of air pollution on four types of ADLs. The following four effects are discovered: Air pollution negatively impacts people going sightseeing in the afternoon; has a positive impact on people staying-in, in the morning and the middle of the day. Air pollution lowers people's desire to go to restaurants for lunch, but far less so in the evening. As air quality worsens, people tend to decrease their walking and cycling and tend to travel more by bus or subway. We also find a monotonically decreasing nonlinear relationship between air quality index and the average CDR-based distance for each person of two citizen groups that go walking or cycling. Our key and novel contributions are that we first define IoB as a ubiquitous concept. Based on this, we propose a methodology to better understand the link between bad air pollution events and citizens' activities of daily life. We applied this methodology in the first comprehensive study that provides quantitative evidence of the actual effect, not the presumed effect, that air pollution can significantly affect a wide range of citizens' activities of daily living.

摘要

本研究旨在基于行为互联网(IoB)定量模拟而不是预先假设北京(中国)的空气污染是否会影响人们的日常生活活动(ADL),在行为互联网中,物联网传感器数据可以发出改变大规模人类行为的环境事件信号。通过呼叫详细记录(CDR)和空气质量数据计算出的人口密度分布,用于构建固定效应模型(FEM),以分析空气污染对四种类型的 ADL 的影响。发现了以下四种影响:空气污染会对人们下午的观光活动产生负面影响;对人们的上午和中午的居家活动有积极影响。空气污染降低了人们午餐外出就餐的欲望,但在晚上则不那么明显。随着空气质量恶化,人们倾向于减少步行和骑自行车,而更多地乘坐公共汽车或地铁出行。我们还发现,空气质量指数与两个步行或骑自行车的市民群体中每个人的平均 CDR 为基础的距离之间存在单调递减的非线性关系。我们的主要和新颖贡献在于,我们首次将 IoB 定义为一个普遍存在的概念。在此基础上,我们提出了一种方法来更好地理解恶劣空气污染事件与公民日常生活活动之间的联系。我们将这种方法应用于首次全面研究中,该研究提供了定量证据,证明空气污染确实会对广泛的公民日常生活活动产生重大影响,而不是假设的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93a7/8402293/c589072ab53c/sensors-21-05569-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验