文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用激光加热熔体静电纺丝制备的竹炭/聚(L-丙交酯)纤维网

Bamboo Charcoal/Poly(L-lactide) Fiber Webs Prepared Using Laser-Heated Melt Electrospinning.

作者信息

Hou Zongzi, Itagaki Nahoko, Kobayashi Haruki, Tanaka Katsufumi, Takarada Wataru, Kikutani Takeshi, Takasaki Midori

机构信息

Doctoral Program of Materials Chemistry, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.

Undergraduate Program of Materials Science, Faculty of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.

出版信息

Polymers (Basel). 2021 Aug 18;13(16):2776. doi: 10.3390/polym13162776.


DOI:10.3390/polym13162776
PMID:34451314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8401290/
Abstract

Although several studies have reported that the addition of bamboo charcoal (BC) to polylactide (PLA) enhances the properties of PLA, to date, no study has been reported on the fabrication of ultrafine BC/poly(L-lactide) (PLLA) webs via electrospinning. Therefore, ultrafine fiber webs of PLLA and BC/PLLA were prepared using PLLA and BC/PLLA raw fibers via a novel laser electrospinning method. Ultrafine PLLA and BC/PLLA fibers with average diameters of approximately 1 μm and coefficients of variation of 13-23 and 20-46% were obtained. Via wide-angle X-ray diffraction (WAXD) analysis, highly oriented crystals were detected in the raw fibers; however, WAXD patterns of both PLLA and BC/PLLA webs implied an amorphous structure of PLLA. Polarizing microscopy images revealed that the webs comprised ultrafine fibers with uniform diameters and wide variations in birefringence. Temperature-modulated differential scanning calorimetry measurements indicated that the degree of order of the crystals in the fibers was lower and the molecules in the fibers had higher mobilities than those in the raw fibers. Transmittance of BC/PLLA webs with an area density of 2.6 mg/cm suggested that the addition of BC improved UV-shielding efficiencies.

摘要

尽管多项研究报告称,在聚乳酸(PLA)中添加竹炭(BC)可增强PLA的性能,但迄今为止,尚未有关于通过静电纺丝制备超细BC/聚(L-乳酸)(PLLA)纤维网的研究报道。因此,采用新型激光静电纺丝法,使用PLLA和BC/PLLA原纤维制备了PLLA和BC/PLLA的超细纤维网。获得了平均直径约为1μm、变异系数为13-23%和20-46%的超细PLLA和BC/PLLA纤维。通过广角X射线衍射(WAXD)分析,在原纤维中检测到高度取向的晶体;然而,PLLA和BC/PLLA纤维网的WAXD图谱均表明PLLA为非晶结构。偏光显微镜图像显示,纤维网由直径均匀且双折射变化较大的超细纤维组成。温度调制差示扫描量热法测量表明,纤维中晶体的有序度较低,且纤维中的分子比原纤维中的分子具有更高的迁移率。面密度为2.6mg/cm的BC/PLLA纤维网的透光率表明,BC的添加提高了紫外线屏蔽效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/585c7cc1754c/polymers-13-02776-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/d489f47f1e49/polymers-13-02776-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/7d2e610609a0/polymers-13-02776-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/95f86ce3b558/polymers-13-02776-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/718aa1cb5128/polymers-13-02776-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/d583fd5b3570/polymers-13-02776-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/5ec403cc4d24/polymers-13-02776-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/989fc5c1574d/polymers-13-02776-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a6c0d5a0abd5/polymers-13-02776-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a76300ceac74/polymers-13-02776-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/e027c2b05e17/polymers-13-02776-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/93472e50f2f0/polymers-13-02776-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/3c31381401ce/polymers-13-02776-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/c52072ba04ef/polymers-13-02776-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/3f494db800a6/polymers-13-02776-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a6ed62916f19/polymers-13-02776-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/585c7cc1754c/polymers-13-02776-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/d489f47f1e49/polymers-13-02776-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/7d2e610609a0/polymers-13-02776-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/95f86ce3b558/polymers-13-02776-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/718aa1cb5128/polymers-13-02776-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/d583fd5b3570/polymers-13-02776-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/5ec403cc4d24/polymers-13-02776-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/989fc5c1574d/polymers-13-02776-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a6c0d5a0abd5/polymers-13-02776-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a76300ceac74/polymers-13-02776-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/e027c2b05e17/polymers-13-02776-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/93472e50f2f0/polymers-13-02776-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/3c31381401ce/polymers-13-02776-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/c52072ba04ef/polymers-13-02776-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/3f494db800a6/polymers-13-02776-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/a6ed62916f19/polymers-13-02776-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206d/8401290/585c7cc1754c/polymers-13-02776-g016.jpg

相似文献

[1]
Bamboo Charcoal/Poly(L-lactide) Fiber Webs Prepared Using Laser-Heated Melt Electrospinning.

Polymers (Basel). 2021-8-18

[2]
Structure and Properties of Poly(ethylene terephthalate) Fiber Webs Prepared via Laser-Electrospinning and Subsequent Annealing Processes.

Materials (Basel). 2020-12-18

[3]
Planar or Biaxial Stretching of Poly(ethylene terephthalate) Fiber Webs Prepared by Laser-Electrospinning.

Materials (Basel). 2022-3-17

[4]
Structure Mediation and Properties of Poly(-lactide)/Poly(-lactide) Blend Fibers.

Polymers (Basel). 2018-12-6

[5]
Homocrystallization and Stereocomplex Crystallization Behaviors of As-Spun and Hot-Drawn Poly(l-lactide)/Poly(d-lactide) Blended Fibers During Heating.

Polymers (Basel). 2019-9-14

[6]
Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks.

Biomacromolecules. 2003

[7]
Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes.

Sci Technol Adv Mater. 2011-1-12

[8]
Fabrication of Magnetic Poly(L-lactide) (PLLA)/FeO Composite Electrospun Fibers.

Materials (Basel). 2024-8-1

[9]
Investigation of biodegradability and cellular activity of PCL/PLA and PCL/PLLA electrospun webs for tissue engineering applications.

Biopolymers. 2023-11

[10]
Polymorphic Crystallization Behavior of a Poly(butylene adipate) Midblock within a Poly(L-lactide-butylene adipate-L-lactide) Triblock Copolymer.

Polymers (Basel). 2022-11-13

引用本文的文献

[1]
Polylactic Acid/Bamboo Leaf Extract Electrospun Mats with Antioxidant Activity for Food Packaging Applications.

Antioxidants (Basel). 2024-12-18

[2]
Activated Carbon-Enriched Electrospun-Produced Scaffolds for Drug Delivery/Release in Biological Systems.

Int J Mol Sci. 2023-4-4

[3]
Release Profiles of Carvacrol or Chlorhexidine of PLA/Graphene Nanoplatelets Membranes Prepared Using Electrospinning and Solution Blow Spinning: A Comparative Study.

Molecules. 2023-2-19

[4]
PCL/Collagen/UA Composite Biomedical Dressing with Ordered Microfiberous Structure Fabricated by a 3D Near-Field Electrospinning Process.

Polymers (Basel). 2022-12-31

[5]
Data Glove with Self-Compensation Mechanism Based on High-Sensitive Elastic Fiber-Optic Sensor.

Polymers (Basel). 2022-12-26

[6]
Laser-Assisted Melt Electrospinning of Poly(L-lactide-co-ε-caprolactone): Analyses on Processing Behavior and Characteristics of Prepared Fibers.

Polymers (Basel). 2022-6-20

[7]
Electrospun Hybrid Films for Fast and Convenient Delivery of Active Herb Extracts.

Membranes (Basel). 2022-4-1

[8]
Planar or Biaxial Stretching of Poly(ethylene terephthalate) Fiber Webs Prepared by Laser-Electrospinning.

Materials (Basel). 2022-3-17

[9]
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release.

Polymers (Basel). 2021-12-7

本文引用的文献

[1]
Electrospun Aspirin/Eudragit/Lipid Hybrid Nanofibers for Colon-targeted Delivery Using an Energy-saving Process.

Chem Res Chin Univ. 2021

[2]
Detailed Process Analysis of Biobased Polybutylene Succinate Microfibers Produced by Laboratory-Scale Melt Electrospinning.

Polymers (Basel). 2021-3-26

[3]
Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations.

Polymers (Basel). 2021-3-30

[4]
Fast Dissolution Electrospun Medicated Nanofibers for Effective Delivery of Poorly Water-Soluble Drug.

Curr Drug Deliv. 2022

[5]
Impact of Water and UV Irradiation on Nonwoven Polylactide/Natural Rubber Fiber.

Polymers (Basel). 2021-1-31

[6]
Electrospun ultrafine fibers for advanced face masks.

Mater Sci Eng R Rep. 2021-1

[7]
Structure and Properties of Poly(ethylene terephthalate) Fiber Webs Prepared via Laser-Electrospinning and Subsequent Annealing Processes.

Materials (Basel). 2020-12-18

[8]
Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers.

Polymers (Basel). 2020-10-20

[9]
Core-Shell Nanofibers of Polyvinylidene Fluoride-based Nanocomposites as Piezoelectric Nanogenerators.

Polymers (Basel). 2020-10-13

[10]
The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fibers.

Polymers (Basel). 2020-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索