Ingress Health, Rotterdam, The Netherlands; Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
AstraZeneca, Mölndal, Sweden.
Value Health. 2021 Sep;24(9):1294-1301. doi: 10.1016/j.jval.2021.03.008. Epub 2021 Apr 20.
Survival extrapolation of trial outcomes is required for health economic evaluation. Generally, all-cause mortality (ACM) is modeled using standard parametric distributions, often without distinguishing disease-specific/excess mortality and general population background mortality (GPM). Recent National Institute for Health and Care Excellence guidance (Technical Support Document 21) recommends adding GPM hazards to disease-specific/excess mortality hazards in the log-likelihood function ("internal additive hazards"). This article compares alternative extrapolation approaches with and without GPM adjustment.
Survival extrapolations using the internal additive hazards approach (1) are compared to no GPM adjustment (2), applying GPM hazards once ACM hazards drop below GPM hazards (3), adding GPM hazards to ACM hazards (4), and proportional hazards for ACM versus GPM hazards (5). The fit, face validity, mean predicted life-years, and corresponding uncertainty measures are assessed for the active versus control arms of immature and mature (30- and 75-month follow-up) multiple myeloma data and mature (64-month follow-up) breast cancer data.
The 5 approaches yielded considerably different outcomes. Incremental mean predicted life-years vary most in the immature multiple myeloma data set. The lognormal distribution (best statistical fit for approaches 1-4) produces survival increments of 3.5 (95% credible interval: 1.4-5.3), 8.5 (3.1-13.0), 3.5 (1.3-5.4), 2.9 (1.1-4.5), and 1.6 (0.4-2.8) years for approaches 1 to 5, respectively. Approach 1 had the highest face validity for all data sets. Uncertainty over parametric distributions was comparable for GPM-adjusted approaches 1, 3, and 4, and much larger for approach 2.
This study highlights the importance of GPM adjustment, and particularly of incorporating GPM hazards in the log-likelihood function of standard parametric distributions.
为了进行健康经济评估,需要对试验结果进行生存外推。通常,使用标准参数分布对全因死亡率(ACM)进行建模,而不区分疾病特异性/超额死亡率和一般人群背景死亡率(GPM)。最近,国家卫生与保健卓越研究所(National Institute for Health and Care Excellence,NICE)的指南(技术支持文件 21)建议在对数似然函数中将 GPM 风险添加到疾病特异性/超额死亡率风险中(“内部附加风险”)。本文比较了有无 GPM 调整的替代外推方法。
使用内部附加风险方法(1)进行生存外推,并与不进行 GPM 调整(2)进行比较,在 ACM 风险低于 GPM 风险时应用 GPM 风险(3),将 GPM 风险添加到 ACM 风险中(4),以及 ACM 与 GPM 风险的比例风险(5)。针对不成熟和成熟(30 和 75 个月随访)多发性骨髓瘤数据以及成熟(64 个月随访)乳腺癌数据的活性与对照臂,评估了这 5 种方法的拟合度、表面有效性、平均预测寿命年数以及相应的不确定性测量值。
这 5 种方法产生了非常不同的结果。在不成熟的多发性骨髓瘤数据集,增量平均预测寿命年数的变化最大。对数正态分布(方法 1-4 的最佳统计拟合)产生的生存增量分别为 3.5(95%可信区间:1.4-5.3)、8.5(3.1-13.0)、3.5(1.3-5.4)、2.9(1.1-4.5)和 1.6(0.4-2.8)年,分别对应方法 1 至 5。对于所有数据集,方法 1 的表面有效性最高。GPM 调整后的方法 1、3 和 4 的参数分布不确定性相当,而方法 2 的不确定性要大得多。
本研究强调了 GPM 调整的重要性,特别是将 GPM 风险纳入标准参数分布的对数似然函数中。