Suppr超能文献

一种用于卫生技术评估的、纳入相对生存外推法和混合时间尺度的多状态模型。

A Multistate Model Incorporating Relative Survival Extrapolation and Mixed Time Scales for Health Technology Assessment.

作者信息

Chen Enoch Yi-Tung, Dickman Paul W, Clements Mark S

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden.

出版信息

Pharmacoeconomics. 2025 Mar;43(3):297-310. doi: 10.1007/s40273-024-01457-w. Epub 2024 Nov 25.

Abstract

BACKGROUND

Multistate models have been widely applied in health technology assessment. However, extrapolating survival in a multistate model setting presents challenges in terms of precision and bias. In this article, we develop an individual-level continuous-time multistate model that integrates relative survival extrapolation and mixed time scales.

METHODS

We illustrate our proposed model using an illness-death model. We model the transition rates using flexible parametric models. We update the hesim package and the microsimulation package in R to simulate event times from models with mixed time scales. This feature allows us to incorporate relative survival extrapolation in a multistate setting. We compare several multistate settings with different parametric models (standard vs. flexible parametric models), and survival frameworks (all-cause vs. relative survival framework) using a previous clinical trial as an illustrative example.

RESULTS

Our proposed approach allows relative survival extrapolation to be carried out in a multistate model. In the example case study, the results agreed better with the observed data than did the commonly applied approach using standard parametric models within an all-cause survival framework.

CONCLUSIONS

We introduce a multistate model that uses flexible parametric models and integrates relative survival extrapolation with mixed time scales. It provides an alternative to combine short-term trial data with long-term external data within a multistate model context in health technology assessment.

摘要

背景

多状态模型已广泛应用于卫生技术评估。然而,在多状态模型环境中推断生存情况在精度和偏差方面存在挑战。在本文中,我们开发了一种个体水平的连续时间多状态模型,该模型整合了相对生存推断和混合时间尺度。

方法

我们使用疾病 - 死亡模型来说明我们提出的模型。我们使用灵活的参数模型对转移率进行建模。我们更新了R语言中的hesim包和微观模拟包,以模拟来自具有混合时间尺度模型的事件时间。此功能使我们能够在多状态环境中纳入相对生存推断。我们以前期一项临床试验为例,比较了几种具有不同参数模型(标准参数模型与灵活参数模型)和生存框架(全因生存框架与相对生存框架)的多状态设置。

结果

我们提出的方法允许在多状态模型中进行相对生存推断。在示例案例研究中,与在全因生存框架内使用标准参数模型的常用方法相比,结果与观察数据的一致性更好。

结论

我们引入了一种使用灵活参数模型并将相对生存推断与混合时间尺度相结合的多状态模型。它为在卫生技术评估的多状态模型背景下将短期试验数据与长期外部数据相结合提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d6/11825556/bce3d718efcd/40273_2024_1457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验