Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Med Decis Making. 2024 Apr;44(3):269-282. doi: 10.1177/0272989X241227230. Epub 2024 Feb 5.
In health technology assessment, restricted mean survival time and life expectancy are commonly evaluated. Parametric models are typically used for extrapolation. Spline models using a relative survival framework have been shown to estimate life expectancy of cancer patients more reliably; however, more research is needed to assess spline models using an all-cause survival framework and standard parametric models using a relative survival framework.
To assess survival extrapolation using standard parametric models and spline models within relative survival and all-cause survival frameworks.
From the Swedish Cancer Registry, we identified patients diagnosed with 5 types of cancer (colon, breast, melanoma, prostate, and chronic myeloid leukemia) between 1981 and 1990 with follow-up until 2020. Patients were categorized into 15 cancer cohorts by cancer and age group (18-59, 60-69, and 70-99 y). We right-censored the follow-up at 2, 3, 5, and 10 y and fitted the parametric models within an all-cause and a relative survival framework to extrapolate to 10 y and lifetime in comparison with the observed Kaplan-Meier survival estimates. All cohorts were modeled with 6 standard parametric models (exponential, Weibull, Gompertz, log-logistic, log-normal, and generalized gamma) and 3 spline models (on hazard, odds, and normal scales).
For predicting 10-y survival, spline models generally performed better than standard parametric models. However, using an all-cause or a relative survival framework did not show any distinct difference. For lifetime survival, extrapolating from a relative survival framework agreed better with the observed survival, particularly using spline models.
For extrapolation to 10 y, we recommend spline models. For extrapolation to lifetime, we suggest extrapolating in a relative survival framework, especially using spline models.
For survival extrapolation to 10 y, spline models generally performed better than standard parametric models did. However, using an all-cause or a relative survival framework showed no distinct difference under the same parametric model.Survival extrapolation to lifetime within a relative survival framework agreed well with the observed data, especially using spline models.Extrapolating parametric models within an all-cause survival framework may overestimate survival proportions at lifetime; models for the relative survival approach may underestimate instead.
在卫生技术评估中,通常会评估受限平均生存时间和预期寿命。参数模型通常用于外推。使用相对生存率框架的样条模型已被证明可以更可靠地估计癌症患者的预期寿命;然而,需要更多的研究来评估使用全因生存框架的样条模型和使用相对生存率框架的标准参数模型。
在相对生存率和全因生存率框架内评估使用标准参数模型和样条模型进行生存外推。
我们从瑞典癌症登记处确定了 1981 年至 1990 年间诊断出的 5 种癌症(结肠癌、乳腺癌、黑色素瘤、前列腺癌和慢性髓性白血病)的患者,并随访至 2020 年。患者根据癌症和年龄组(18-59、60-69 和 70-99 岁)分为 15 个癌症队列。我们将随访时间右删失为 2、3、5 和 10 年,并在全因和相对生存率框架内拟合参数模型,以与观察到的 Kaplan-Meier 生存估计值进行 10 年和终生外推。所有队列均采用 6 种标准参数模型(指数、Weibull、Gompertz、对数逻辑、对数正态和广义伽马)和 3 种样条模型(危险、赔率和正态尺度)进行建模。
对于预测 10 年生存率,样条模型通常比标准参数模型表现更好。然而,使用全因或相对生存率框架并没有显示出明显的区别。对于终生生存,从相对生存率框架进行外推与观察到的生存更一致,特别是使用样条模型。
对于 10 年的外推,我们建议使用样条模型。对于终生的外推,我们建议在相对生存率框架内进行外推,特别是使用样条模型。
对于 10 年生存的外推,样条模型通常比标准参数模型表现更好。然而,在相同的参数模型下,使用全因或相对生存率框架并没有显示出明显的区别。在相对生存率框架内进行终生生存的外推与观察到的数据非常吻合,特别是使用样条模型。在全因生存框架内外推参数模型可能会高估终生的生存比例;而相对生存率方法的模型可能会低估。