Suppr超能文献

基于统计学的过去 80 万年高分辨率全球陆地气候重建。

A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years.

机构信息

Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom.

GNS Science, PO Box 31312, Lower Hutt, 5040, New Zealand.

出版信息

Sci Data. 2021 Aug 27;8(1):228. doi: 10.1038/s41597-021-01009-3.

Abstract

Curated global climate data have been generated from climate model outputs for the last 120,000 years, whereas reconstructions going back even further have been lacking due to the high computational cost of climate simulations. Here, we present a statistically-derived global terrestrial climate dataset for every 1,000 years of the last 800,000 years. It is based on a set of linear regressions between 72 existing HadCM3 climate simulations of the last 120,000 years and external forcings consisting of CO, orbital parameters, and land type. The estimated climatologies were interpolated to 0.5° resolution and bias-corrected using present-day climate. The data compare well with the original HadCM3 simulations and with long-term proxy records. Our dataset includes monthly temperature, precipitation, cloud cover, and 17 bioclimatic variables. In addition, we derived net primary productivity and global biome distributions using the BIOME4 vegetation model. The data are a relevant source for different research areas, such as archaeology or ecology, to study the long-term effect of glacial-interglacial climate cycles for periods beyond the last 120,000 years.

摘要

经过精心挑选的全球气候数据是根据过去 12 万年的气候模型输出生成的,而由于气候模拟的计算成本很高,更早时期的重建数据则一直缺乏。在这里,我们提供了一个基于统计的过去 80 万年每 1000 年的全球陆地气候数据集。它基于过去 120,000 年的 72 个现有 HadCM3 气候模拟与外部强迫因素(包括 CO、轨道参数和土地类型)之间的一组线性回归。估计的气候概况被插值到 0.5°的分辨率,并使用现代气候进行了偏差校正。该数据集与原始的 HadCM3 模拟和长期代理记录吻合较好。我们的数据集包括每月的温度、降水、云量和 17 个生物气候变量。此外,我们还使用 BIOME4 植被模型得出了净初级生产力和全球生物群落分布。这些数据是考古学或生态学等不同研究领域的重要数据源,可用于研究冰川间冰期气候循环对过去 120,000 年以外时期的长期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14fe/8397735/42550ed68c59/41597_2021_1009_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验