Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100 , Adelaide, South Australia 5001, Australia.
Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage , Wollongong, New South Wales, Australia.
Proc Biol Sci. 2024 Sep;291(2031):20240967. doi: 10.1098/rspb.2024.0967. Epub 2024 Sep 18.
The hypothesized main drivers of megafauna extinctions in the late Quaternary have wavered between over-exploitation by humans and environmental change, with recent investigations demonstrating more nuanced synergies between these drivers depending on taxon, spatial scale, and region. However, most studies still rely on comparing archaeologically based chronologies of timing of initial human arrival into naïve ecosystems and palaeontologically inferred dates of megafauna extinctions. Conclusions arising from comparing chronologies also depend on the reliability of dated evidence, dating uncertainties, and correcting for the low probability of preservation (Signor-Lipps effect). While some models have been developed to test the susceptibility of megafauna to theoretical offtake rates, none has explicitly linked human energetic needs, prey choice, and hunting efficiency to examine the plausibility of human-driven extinctions. Using the island of Cyprus in the terminal Pleistocene as an ideal test case because of its late human settlement (14.2-13.2 ka), small area (11 000 km), and low megafauna diversity (2 species), we developed stochastic models of megafauna population dynamics, with offtake dictated by human energetic requirements, prey choice, and hunting-efficiency functions to test whether the human population at the end of the Pleistocene could have caused the extinction of dwarf hippopotamus () and dwarf elephants (). Our models reveal not only that the estimated human population sizes ( = 3000-7000) in Late Pleistocene Cyprus could have easily driven both species to extinction within < 1000 years, the model predictions match the observed, Signor-Lipps-corrected chronological sequence of megafauna extinctions inferred from the palaeontological record ( at ~12-11.1 ka, followed by at ~10.3-9.1 ka).
在第四纪晚期,大型动物灭绝的主要驱动因素假设在人类过度开发和环境变化之间摇摆不定,最近的调查表明,这些驱动因素之间存在更加细微的协同作用,具体取决于分类群、空间尺度和区域。然而,大多数研究仍然依赖于比较人类最初进入原始生态系统的考古学时间序列和古生物学推断的大型动物灭绝日期。从比较时间序列中得出的结论也取决于年代证据的可靠性、年代不确定性以及纠正保存概率低的问题(Signor-Lipps 效应)。虽然已经开发了一些模型来测试大型动物对理论上的采伐率的易感性,但没有一个模型明确将人类的能量需求、猎物选择和狩猎效率联系起来,以检验人类驱动灭绝的合理性。由于其晚期人类定居 (14.2-13.2 ka)、小面积 (11 000 km) 和低大型动物多样性 (2 种),塞浦路斯岛在末次冰期被用作理想的测试案例,我们开发了大型动物种群动态的随机模型,其中采伐由人类的能量需求、猎物选择和狩猎效率函数决定,以检验在更新世末期,人类种群是否可能导致矮河马 () 和矮象 () 的灭绝。我们的模型不仅揭示了更新世晚期塞浦路斯估计的人口规模(=3000-7000)很容易在 <1000 年内使这两个物种灭绝,而且模型预测与观察到的、经过 Signor-Lipps 修正的古生物学记录推断的大型动物灭绝的时间序列相匹配(在 ~12-11.1 ka 灭绝,其次是在 ~10.3-9.1 ka 灭绝)。