Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.
Boston Scientific, Marlborough, Massachusetts, USA.
JACC Clin Electrophysiol. 2021 Dec;7(12):1505-1515. doi: 10.1016/j.jacep.2021.06.009. Epub 2021 Aug 25.
This study aimed to apply machine learning (ML) to develop a prediction model for short-term cardiac resynchronization therapy (CRT) response to identifying CRT candidates for early multidisciplinary CRT heart failure (HF) care.
Multidisciplinary optimization of cardiac resynchronization therapy (CRT) delivery can improve long-term CRT outcomes but requires substantial staff resources.
Participants from the SMART-AV (SmartDelay-Determined AV Optimization: Comparison of AV Optimization Methods Used in Cardiac Resynchronization Therapy [CRT]) trial (n = 741; age: 66 ± 11 years; 33% female; 100% New York Heart Association HF functional class III-IV; 100% ejection fraction ≤35%) were randomly split into training/testing (80%; n = 593) and validation (20%; n = 148) samples. Baseline clinical, electrocardiographic, echocardiographic, and biomarker characteristics, and left ventricular (LV) lead position (43 variables) were included in 8 ML models (random forests, convolutional neural network, lasso, adaptive lasso, plugin lasso, elastic net, ridge, and logistic regression). A composite of freedom from death and HF hospitalization and a >15% reduction in LV end-systolic volume index at 6 months after CRT was the end point.
The primary end point was met by 337 patients (45.5%). The adaptive lasso model was the most more accurate (area under the receiver operating characteristic curve: 0.759; 95% CI: 0.678-0.840), well calibrated, and parsimonious (19 predictors; nearly half potentially modifiable). Participants in the 5th quintile compared with those in the 1st quintile of the prediction model had 14-fold higher odds of composite CRT response (odds ratio: 14.0; 95% CI: 8.0-14.4). The model predicted CRT response with 70% accuracy, 70% sensitivity, and 70% specificity, and should be further validated in prospective studies.
ML predicts short-term CRT response and thus may help with CRT procedure and early post-CRT care planning. (SmartDelay-Determined AV Optimization: A Comparison of AV Optimization Methods Used in Cardiac Resynchronization Therapy [CRT] [SMART-AV]; NCT00677014).
本研究旨在应用机器学习(ML)开发一种预测模型,以识别心脏再同步治疗(CRT)的短期心脏反应,从而为早期多学科 CRT 心力衰竭(HF)治疗确定 CRT 候选者。
CRT 传递的多学科优化可以改善长期 CRT 结果,但需要大量的人员资源。
来自 SMART-AV(智能延迟确定 AV 优化:比较 CRT 中使用的 AV 优化方法)试验(n=741;年龄:66±11 岁;33%为女性;100%纽约心脏协会 HF 功能分类 III-IV;100%射血分数≤35%)的参与者被随机分为训练/测试(80%;n=593)和验证(20%;n=148)样本。包括基线临床、心电图、超声心动图和生物标志物特征,以及左心室(LV)导联位置(43 个变量)被纳入 8 个 ML 模型(随机森林、卷积神经网络、套索、自适应套索、插件套索、弹性网、岭和逻辑回归)。CRT 后 6 个月无死亡和 HF 住院且 LV 收缩末期容积指数降低>15%的复合终点。
337 名患者(45.5%)达到主要终点。自适应套索模型更准确(接受者操作特征曲线下面积:0.759;95%置信区间:0.678-0.840)、校准良好且简约(19 个预测因子;近一半可能是可修改的)。与预测模型第 1 五分位数相比,第 5 五分位数的患者复合 CRT 反应的几率高 14 倍(优势比:14.0;95%置信区间:8.0-14.4)。该模型以 70%的准确率、70%的灵敏度和 70%的特异性预测 CRT 反应,应在前瞻性研究中进一步验证。
ML 预测 CRT 的短期反应,因此可能有助于 CRT 手术和 CRT 后早期护理计划。(智能延迟确定 AV 优化:比较 CRT 中使用的 AV 优化方法 [SMART-AV];NCT00677014)。