Suppr超能文献

人工智能模型在预测心脏再同步治疗反应中的应用:系统评价。

Artificial intelligence models in prediction of response to cardiac resynchronization therapy: a systematic review.

机构信息

Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.

Visual Geometry Group, University of Oxford, Banbury Road 25, OX2 6NN Oxford, UK.

出版信息

Heart Fail Rev. 2024 Jan;29(1):133-150. doi: 10.1007/s10741-023-10357-8. Epub 2023 Oct 20.

Abstract

The aim of the presented review is to summarize the literature data on the accuracy and clinical applicability of artificial intelligence (AI) models as a valuable alternative to the current guidelines in predicting cardiac resynchronization therapy (CRT) response and phenotyping of patients eligible for CRT implantation. This systematic review was performed according to the PRISMA guidelines. After a search of Scopus, PubMed, Cochrane Library, and Embase databases, 675 records were identified. Twenty supervised (prediction of CRT response) and 9 unsupervised (clustering and phenotyping) AI models were analyzed qualitatively (22 studies, 14,258 patients). Fifty-five percent of AI models were based on retrospective studies. Unsupervised AI models were able to identify clusters of patients with significantly different rates of primary outcome events (death, heart failure event). In comparison to the guideline-based CRT response prediction accuracy of 70%, supervised AI models trained on cohorts with > 100 patients achieved up to 85% accuracy and an AUC of 0.86 in their prediction of response to CRT for echocardiographic and clinical outcomes, respectively. AI models seem to be an accurate and clinically applicable tool in phenotyping of patients eligible for CRT implantation and predicting potential responders. In the future, AI may help to increase CRT response rates to over 80% and improve clinical decision-making and prognosis of the patients, including reduction of mortality rates. However, these findings must be validated in randomized controlled trials.

摘要

本综述的目的是总结人工智能 (AI) 模型在预测心脏再同步治疗 (CRT) 反应和符合 CRT 植入条件的患者表型方面的准确性和临床适用性的文献数据,作为当前指南的有价值的替代方法。本系统评价按照 PRISMA 指南进行。在对 Scopus、PubMed、Cochrane 图书馆和 Embase 数据库进行搜索后,确定了 675 条记录。分析了 20 个监督 (预测 CRT 反应) 和 9 个无监督 (聚类和表型) AI 模型 (22 项研究,14258 名患者)。AI 模型的 55%基于回顾性研究。无监督 AI 模型能够识别具有显著不同主要结局事件 (死亡、心力衰竭事件) 发生率的患者群。与基于指南的 CRT 反应预测准确性为 70%相比,在基于超声心动图和临床结局的 CRT 反应预测方面,在超过 100 名患者的队列中训练的监督 AI 模型的准确性高达 85%,AUC 为 0.86。AI 模型似乎是一种准确且具有临床适用性的工具,可用于对符合 CRT 植入条件的患者进行表型分析,并预测潜在的反应者。未来,AI 可能有助于将 CRT 反应率提高到 80%以上,并改善患者的临床决策和预后,包括降低死亡率。然而,这些发现必须在随机对照试验中得到验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6c/10904439/275110f2419f/10741_2023_10357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验