Suppr超能文献

基于遥感和级联并行循环神经网络新型深度学习算法的滑坡易发性预测建模。

Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network.

机构信息

Information Engineering School, Nanchang University, Nanchang 330031, China.

ARC Centre of Excellence for Geotechnical Science and Engineering, University of Newcastle, Newcastle, NSW 2308, Australia.

出版信息

Sensors (Basel). 2020 Mar 12;20(6):1576. doi: 10.3390/s20061576.

Abstract

Landslide susceptibility prediction (LSP) modeling is an important and challenging problem. Landslide features are generally uncorrelated or nonlinearly correlated, resulting in limited LSP performance when leveraging conventional machine learning models. In this study, a deep-learning-based model using the long short-term memory (LSTM) recurrent neural network and conditional random field (CRF) in cascade-parallel form was proposed for making LSPs based on remote sensing (RS) images and a geographic information system (GIS). The RS images are the main data sources of landslide-related environmental factors, and a GIS is used to analyze, store, and display spatial big data. The cascade-parallel LSTM-CRF consists of frequency ratio values of environmental factors in the input layers, cascade-parallel LSTM for feature extraction in the hidden layers, and cascade-parallel full connection for classification and CRF for landslide/non-landslide state modeling in the output layers. The cascade-parallel form of LSTM can extract features from different layers and merge them into concrete features. The CRF is used to calculate the energy relationship between two grid points, and the extracted features are further smoothed and optimized. As a case study, the cascade-parallel LSTM-CRF was applied to Shicheng County of Jiangxi Province in China. A total of 2709 landslide grid cells were recorded and 2709 non-landslide grid cells were randomly selected from the study area. The results show that, compared with existing main traditional machine learning algorithms, such as multilayer perception, logistic regression, and decision tree, the proposed cascade-parallel LSTM-CRF had a higher landslide prediction rate (positive predictive rate: 72.44%, negative predictive rate: 80%, total predictive rate: 75.67%). In conclusion, the proposed cascade-parallel LSTM-CRF is a novel data-driven deep learning model that overcomes the limitations of traditional machine learning algorithms and achieves promising results for making LSPs.

摘要

滑坡敏感性预测(LSP)建模是一个重要且具有挑战性的问题。滑坡特征通常是不相关的或非线性相关的,因此在利用传统机器学习模型进行 LSP 时,性能受到限制。在这项研究中,提出了一种基于长短期记忆(LSTM)递归神经网络和条件随机场(CRF)的级联并行形式的深度学习模型,用于基于遥感(RS)图像和地理信息系统(GIS)进行 LSP。RS 图像是滑坡相关环境因素的主要数据源,GIS 用于分析、存储和显示空间大数据。级联并行 LSTM-CRF 由输入层中环境因素的频率比值、隐藏层中的级联并行 LSTM 用于特征提取、级联并行全连接用于分类以及输出层中的 CRF 用于滑坡/非滑坡状态建模组成。LSTM 的级联形式可以从不同的层中提取特征,并将它们合并为具体的特征。CRF 用于计算两个网格点之间的能量关系,并且提取的特征进一步平滑和优化。作为案例研究,将级联并行 LSTM-CRF 应用于中国江西省石城县。共记录了 2709 个滑坡网格单元,并且从研究区域中随机选择了 2709 个非滑坡网格单元。结果表明,与现有的主要传统机器学习算法(如多层感知器、逻辑回归和决策树)相比,所提出的级联并行 LSTM-CRF 具有更高的滑坡预测率(正预测率:72.44%,负预测率:80%,总预测率:75.67%)。总之,所提出的级联并行 LSTM-CRF 是一种新颖的数据驱动深度学习模型,克服了传统机器学习算法的局限性,为进行 LSP 提供了有前途的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9503/7146231/e04456a34c37/sensors-20-01576-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验