Suppr超能文献

利用光合半导体生物杂化体进行太阳能驱动的二氧化碳固定。

Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids.

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

出版信息

Faraday Discuss. 2019 Jul 4;215(0):54-65. doi: 10.1039/c8fd00187a.

Abstract

Solar-driven conversion of carbon dioxide to value-added carbon products is an ambitious objective of ongoing research efforts. However, high overpotential, low selectivity and poor CO2 mass transfer plague purely inorganic electrocatalysts. In this instance, we can consider a class of biological organisms that have evolved to achieve CO2 fixation. We can harness and combine the streamlined CO2 fixation pathways of these whole organisms with the exceptional ability of semiconducting nanomaterials to harvest solar energy. A novel nanomaterial-biological interface has been pioneered in which light-capturing cadmium sulfide nanoparticles reside within individual organisms essentially powering biological CO2 fixation by solar energy. In order to further develop the photosensitized organism platform, more biocompatible photosensitizers and cytoprotective strategies are required as well as elucidation of charge transfer mechanisms. Here, we discuss the ability of gold nanoclusters to photosensitize a model acetogen effectively and biocompatibly. Additionally, we present innovative materials including two-dimensional metal organic framework sheets and alginate hydrogels to shield photosensitized cells. Finally, we delve into original work using transient absorption spectroscopy to inform on charge transfer mechanisms.

摘要

将二氧化碳转化为有价值的碳产品是当前研究工作的一个雄心勃勃的目标。然而,高过电位、低选择性和较差的 CO2 传质困扰着纯粹的无机电催化剂。在这种情况下,我们可以考虑一类已经进化到能够固定 CO2 的生物有机体。我们可以利用这些完整生物体的流线型 CO2 固定途径,并结合半导体纳米材料收集太阳能的卓越能力。一种新型的纳米材料-生物界面已经被开创出来,在这个界面中,光捕获的硫化镉纳米颗粒存在于单个生物体内部,通过太阳能为生物 CO2 固定提供动力。为了进一步开发光致敏生物体平台,需要更具生物相容性的光敏剂和细胞保护策略,以及阐明电荷转移机制。在这里,我们讨论了金纳米团簇有效地、生物相容地光敏化模型产乙酸菌的能力。此外,我们还介绍了创新性的材料,包括二维金属有机骨架片和藻酸盐水凝胶,以屏蔽光敏化细胞。最后,我们深入研究了使用瞬态吸收光谱来告知电荷转移机制的原始工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验