Suppr超能文献

计算与细胞内肽库联合筛选:寻找一种强效且具选择性的Fra1抑制剂。

Combined computational and intracellular peptide library screening: towards a potent and selective Fra1 inhibitor.

作者信息

Yu Miao, Ghamsari Lila, Rotolo Jim A, Kappel Barry J, Mason Jody M

机构信息

Department of Biology & Biochemistry, University of Bath Claverton Down Bath BA2 7AY UK

Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA.

出版信息

RSC Chem Biol. 2021 Jan 29;2(2):656-668. doi: 10.1039/d1cb00012h. eCollection 2021 Apr 1.

Abstract

To date, most research into the inhibition of oncogenic transcriptional regulator, Activator Protein 1 (AP-1), has focused on heterodimers of cJun and cFos. However, the Fra1 homologue remains an important cancer target. Here we describe library design coupled with computational and intracellular screening as an effective methodology to derive an antagonist that is selective for Fra1 relative to Jun counterparts. To do so the CAN computational tool was used to rapidly screen >75 million peptide library members, narrowing the library size by >99.8% to one accessible to intracellular PCA selection. The resulting 131 072-member library was predicted to contain high quality binders with both a high likelihood of target engagement, while simultaneously avoiding homodimerization and off-target interaction with Jun homologues. PCA screening was next performed to enrich those members that meet these criteria. In particular, optimization was achieved inclusion of options designed to generate the potential for compromised intermolecular contacts in both desired and non-desired species. This is an often-overlooked prerequisite in the conflicting design requirement of libraries that must be selective for their target in the context of a range of alternative potential interactions. Here we demonstrate that specificity is achieved a combination of both hydrophobic and electrostatic contacts as exhibited by the selected peptide (Fra1W). analysis of the desired Fra1-Fra1W interaction further validates high Fra1 affinity (917 nM) yet selective binding relative to Fra1W homodimers or affinity for cJun. The CAN → PCA based multidisciplinary approach provides a robust screening pipeline in generating target-specific hits, as well as new insight into rational peptide design in the search for novel bZIP family inhibitors.

摘要

迄今为止,大多数针对致癌转录调节因子激活蛋白1(AP-1)抑制作用的研究都集中在cJun和cFos的异二聚体上。然而,Fra1同源物仍然是一个重要的癌症靶点。在此,我们描述了将文库设计与计算和细胞内筛选相结合,作为一种有效的方法来获得相对于Jun同源物对Fra1具有选择性的拮抗剂。为此,使用CAN计算工具快速筛选了超过7500万个肽库成员,将文库规模缩小了99.8%以上,使其缩小到可用于细胞内主成分分析(PCA)筛选的规模。由此产生的131072个成员的文库预计包含高质量的结合物,这些结合物既有很高的与靶点结合的可能性,同时又能避免与Jun同源物发生同源二聚化和脱靶相互作用。接下来进行PCA筛选,以富集符合这些标准的成员。特别是,通过纳入旨在为所需和非所需物种中分子间接触受损创造可能性的选项实现了优化。在文库的设计要求相互冲突的情况下,这是一个常常被忽视的前提条件,即文库必须在一系列潜在的替代相互作用的背景下对其靶点具有选择性。在此,我们证明通过所选肽(Fra1W)表现出的疏水和静电接触的组合实现了特异性。对所需的Fra1-Fra1W相互作用的分析进一步验证了高Fra1亲和力(917 nM),但相对于Fra1W同源二聚体或对cJun的亲和力具有选择性结合。基于CAN→PCA的多学科方法提供了一个强大的筛选流程,用于生成靶点特异性的命中物,同时也为寻找新型bZIP家族抑制剂的合理肽设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec54/8341738/d9006866757b/d1cb00012h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验