Suppr超能文献

基于卷积神经网络的睡眠呼吸暂停自动检测方法

[Sleep apnea automatic detection method based on convolutional neural network].

作者信息

Gao Qunxia, Shang Lijuan, Wu Kai

机构信息

Department of Electronic, Software Engineering Institute of Guangzhou, Guangzhou 510990, P.R.China.

Department of software engineering, Neusoft Institute Guangdong, Foshan, Guangdong 528225, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Aug 25;38(4):678-685. doi: 10.7507/1001-5515.202012025.

Abstract

Sleep apnea (SA) detection method based on traditional machine learning needs a lot of efforts in feature engineering and classifier design. We constructed a one-dimensional convolutional neural network (CNN) model, which consists in four convolution layers, four pooling layers, two full connection layers and one classification layer. The automatic feature extraction and classification were realized by the structure of the proposed CNN model. The model was verified by the whole night single-channel sleep electrocardiogram (ECG) signals of 70 subjects from the Apnea-ECG dataset. Our results showed that the accuracy of per-segment SA detection was ranged from 80.1% to 88.0%, using the input signals of single-channel ECG signal, RR interval (RRI) sequence, R peak sequence and RRI sequence + R peak sequence respectively. These results indicated that the proposed CNN model was effective and can automatically extract and classify features from the original single-channel ECG signal or its derived signal RRI and R peak sequence. When the input signals were RRI sequence + R peak sequence, the CNN model achieved the best performance. The accuracy, sensitivity and specificity of per-segment SA detection were 88.0%, 85.1% and 89.9%, respectively. And the accuracy of per-recording SA diagnosis was 100%. These findings indicated that the proposed method can effectively improve the accuracy and robustness of SA detection and outperform the methods reported in recent years. The proposed CNN model can be applied to portable screening diagnosis equipment for SA with remote server.

摘要

基于传统机器学习的睡眠呼吸暂停(SA)检测方法在特征工程和分类器设计方面需要付出很多努力。我们构建了一个一维卷积神经网络(CNN)模型,它由四个卷积层、四个池化层、两个全连接层和一个分类层组成。通过所提出的CNN模型结构实现了自动特征提取和分类。该模型通过来自Apnea-ECG数据集中70名受试者的整夜单通道睡眠心电图(ECG)信号进行了验证。我们的结果表明,分别使用单通道ECG信号、RR间期(RRI)序列、R波峰序列和RRI序列 + R波峰序列作为输入信号时,逐段SA检测的准确率在80.1%至88.0%之间。这些结果表明,所提出的CNN模型是有效的,并且可以从原始单通道ECG信号或其派生信号RRI和R波峰序列中自动提取特征并进行分类。当输入信号为RRI序列 + R波峰序列时,CNN模型表现最佳。逐段SA检测的准确率、灵敏度和特异性分别为88.0%、85.1%和89.9%。并且每次记录的SA诊断准确率为100%。这些发现表明,所提出的方法可以有效提高SA检测的准确性和鲁棒性,并且优于近年来报道的方法。所提出的CNN模型可应用于带有远程服务器的SA便携式筛查诊断设备。

相似文献

1
[Sleep apnea automatic detection method based on convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Aug 25;38(4):678-685. doi: 10.7507/1001-5515.202012025.
5
A RR interval based automated apnea detection approach using residual network.
Comput Methods Programs Biomed. 2019 Jul;176:93-104. doi: 10.1016/j.cmpb.2019.05.002. Epub 2019 May 8.
6
SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
Comput Biol Med. 2021 Jul;134:104532. doi: 10.1016/j.compbiomed.2021.104532. Epub 2021 May 29.
7
Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram.
Comput Methods Programs Biomed. 2019 Oct;180:105001. doi: 10.1016/j.cmpb.2019.105001. Epub 2019 Jul 30.
8
RAFNet: Restricted attention fusion network for sleep apnea detection.
Neural Netw. 2023 May;162:571-580. doi: 10.1016/j.neunet.2023.03.019. Epub 2023 Mar 21.
9
BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection.
IEEE J Biomed Health Inform. 2024 May;28(5):2473-2484. doi: 10.1109/JBHI.2023.3278657. Epub 2024 May 6.
10
ECG-Derived Heart Rate Variability Interpolation and 1-D Convolutional Neural Networks for Detecting Sleep Apnea.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:637-640. doi: 10.1109/EMBC44109.2020.9175998.

本文引用的文献

1
[Detection of inferior myocardial infarction based on densely connected convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Feb 25;37(1):142-149. doi: 10.7507/1001-5515.201904028.
2
Detection of Sleep Apnea from Single-Lead ECG Signal Using a Time Window Artificial Neural Network.
Biomed Res Int. 2019 Dec 23;2019:9768072. doi: 10.1155/2019/9768072. eCollection 2019.
3
Obstructive sleep apnea and cardiovascular disease, a story of confounders!
Sleep Breath. 2020 Dec;24(4):1299-1313. doi: 10.1007/s11325-019-01945-w. Epub 2020 Jan 9.
4
[Pulmonary nodule detection method based on convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Dec 25;36(6):969-977. doi: 10.7507/1001-5515.201902001.
5
[Classification of heart sound signals in congenital heart disease based on convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Oct 25;36(5):728-736. doi: 10.7507/1001-5515.201806031.
7
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.
Comput Biol Med. 2018 Sep 1;100:270-278. doi: 10.1016/j.compbiomed.2017.09.017. Epub 2017 Sep 27.
8
An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions.
Comput Biol Med. 2016 Oct 1;77:116-24. doi: 10.1016/j.compbiomed.2016.08.012. Epub 2016 Aug 13.
9
An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model From ECG Signals.
IEEE Trans Biomed Eng. 2016 Jul;63(7):1532-42. doi: 10.1109/TBME.2015.2498199. Epub 2015 Nov 5.
10
Obstructive sleep apnea detection using spectrum and bispectrum analysis of single-lead ECG signal.
Physiol Meas. 2015 Sep;36(9):1963-1980. doi: 10.1088/0967-3334/36/9/1963. Epub 2015 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验