Sharan Roneel V, Berkovsky Shlomo, Xiong Hao, Coiera Enrico
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:637-640. doi: 10.1109/EMBC44109.2020.9175998.
Feature extraction from ECG-derived heart rate variability signal has shown to be useful in classifying sleep apnea. In earlier works, time-domain features, frequency-domain features, and a combination of the two have been used with classifiers such as logistic regression and support vector machines. However, more recently, deep learning techniques have outperformed these conventional feature engineering and classification techniques in various applications. This work explores the use of convolutional neural networks (CNN) for detecting sleep apnea segments. CNN is an image classification technique that has shown robust performance in various signal classification applications. In this work, we use it to classify one-dimensional heart rate variability signal, thereby utilizing a one-dimensional CNN (1-D CNN). The proposed technique resizes the raw heart rate variability data to a common dimension using cubic interpolation and uses it as a direct input to the 1-D CNN, without the need for feature extraction and selection. The performance of the method is evaluated on a dataset of 70 overnight ECG recordings, with 35 recordings used for training the model and 35 for testing. The proposed method achieves an accuracy of 88.23% (AUC=0.9453) in detecting sleep apnea epochs, outperforming several baseline techniques.
从心电图衍生的心率变异性信号中提取特征已被证明在睡眠呼吸暂停的分类中很有用。在早期的研究中,时域特征、频域特征以及两者的组合已与逻辑回归和支持向量机等分类器一起使用。然而,最近深度学习技术在各种应用中已经超越了这些传统的特征工程和分类技术。这项工作探索了使用卷积神经网络(CNN)来检测睡眠呼吸暂停片段。CNN是一种图像分类技术,在各种信号分类应用中都表现出强大的性能。在这项工作中,我们使用它来对一维心率变异性信号进行分类,从而使用一维卷积神经网络(1-D CNN)。所提出的技术使用三次样条插值将原始心率变异性数据调整为一个共同的维度,并将其作为1-D CNN的直接输入,无需进行特征提取和选择。该方法的性能在一个包含70个夜间心电图记录的数据集上进行评估,其中35个记录用于训练模型,35个用于测试。所提出的方法在检测睡眠呼吸暂停时段时达到了88.23%的准确率(AUC = 0.9453),优于几种基线技术。