Issa Ali, Izquierdo Irene, Merheb Melissa, Ge Dandan, Broussier Aurélie, Ghabri Nawres, Marguet Sylvie, Couteau Christophe, Bachelot Renaud, Jradi Safi
Light, nanomaterials & nanotechnologies Laboratory (L2n), Université de Technologie de Troyes (UTT) & CNRS ERL7004, 12 rue Marie Curie, 10004 Troyes Cedex, France.
Doctoral School of Sciences and Technology, Rafic Hariri Campus, Lebanese University, Hadath 1003, Lebanon.
ACS Appl Mater Interfaces. 2021 Sep 8;13(35):41846-41856. doi: 10.1021/acsami.1c03905. Epub 2021 Aug 29.
The integration of nanoparticles (NPs) into photonic devices and plasmonic sensors requires selective patterning of these NPs with fine control of their size, shape, and spatial positioning. In this article, we report on a general strategy to pattern different types of NPs. This strategy involves the functionalization of photopolymers before their patterning by two-photon laser writing to fabricate micro- and nanostructures that selectively attract colloidal NPs with suitable ligands, allowing their precise immobilization and organization even within complex 3D structures. Monolayers of NPs without aggregations are obtained and the surface density of NPs on the polymer surface can be controlled by changing either the time of immersion in the colloidal solution or the type of amine molecule chemically grafted on the polymer surface. Different types of NPs (gold, silver, polystyrene, iron oxide, colloidal quantum dots, and nanodiamonds) of different sizes are introduced showing a potential toward nanophotonic applications. To validate the great potential of our method, we successfully demonstrate the integration of quantum dots within a gold nanocube with high spatial resolution and nanometer precision. The promise of this hybrid nanosource of light (plasmonic/polymer/QDs) as optical nanoswitch is illustrated through photoluminescence measurements under polarized exciting light.
将纳米颗粒(NPs)集成到光子器件和等离子体传感器中,需要对这些纳米颗粒进行选择性图案化,并精确控制其尺寸、形状和空间定位。在本文中,我们报道了一种对不同类型纳米颗粒进行图案化的通用策略。该策略包括在通过双光子激光写入对光聚合物进行图案化之前,对其进行功能化处理,以制造出能够选择性吸引带有合适配体的胶体纳米颗粒的微纳结构,从而即使在复杂的三维结构中也能实现其精确固定和排列。获得了无团聚的纳米颗粒单层,并且可以通过改变在胶体溶液中的浸泡时间或化学接枝在聚合物表面的胺分子类型来控制聚合物表面纳米颗粒的表面密度。引入了不同尺寸的不同类型纳米颗粒(金、银、聚苯乙烯、氧化铁、胶体量子点和纳米金刚石),展示了其在纳米光子学应用方面的潜力。为了验证我们方法的巨大潜力,我们成功地以高空间分辨率和纳米精度展示了量子点在金纳米立方体内的集成。通过在偏振激发光下的光致发光测量,展示了这种混合纳米光源(等离子体/聚合物/量子点)作为光学纳米开关的前景。