Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
Microbiologyopen. 2021 Aug;10(4):e1227. doi: 10.1002/mbo3.1227.
The imperfect denitrifier, Candidatus (Ca.) Desulfobacillus denitrificans, which lacks nitric oxide (NO) reductase, frequently appears in anammox bioreactors depending on the operating conditions. We used genomic and metatranscriptomic analyses to evaluate the metabolic potential of Ca. D. denitrificans and deduce its functional relationships to anammox bacteria (i.e., Ca. Brocadia pituitae). Although Ca. D. denitrificans is hypothesized to supply NO to Ca. B. pituitae as a byproduct of imperfect denitrification, this microbe also possesses hydroxylamine oxidoreductase, which catalyzes the oxidation of hydroxylamine to NO and potentially the reverse reaction. Ca. D. denitrificans can use a range of electron donors for denitrification, including aromatic compounds, glucose, sulfur compounds, and hydrogen, but metatranscriptomic analysis suggested that the major electron donors are aromatic compounds, which inhibit anammox activity. The interrelationship between Ca. D. denitirificans and Ca. B. pituitae via the metabolism of aromatic compounds may govern the population balance of both species. Ca. D. denitrificans also has the potential to fix CO via an irregular Calvin cycle and couple denitrification to the oxidation of hydrogen and sulfur compounds under chemolithoautotrophic conditions. This metabolic versatility, which suggests a mixotrophic lifestyle, would facilitate the growth of Ca. D. denitrificans in the anammox bioreactor.
不完全脱氮菌,候选种(Ca.)脱硫弧菌,缺乏一氧化氮(NO)还原酶,根据操作条件,经常出现在厌氧氨氧化生物反应器中。我们使用基因组和宏转录组分析来评估 Ca. D. 脱硫弧菌的代谢潜力,并推断其与厌氧氨氧化菌(即 Ca. Brocadia pituitae)的功能关系。虽然 Ca. D. 脱硫弧菌被假设为作为不完全脱氮的副产物将 NO 供应给 Ca. B. pituitae,但这种微生物也具有羟胺氧化还原酶,可催化羟胺氧化为 NO,并且可能发生相反的反应。Ca. D. 脱硫弧菌可以使用一系列电子供体进行反硝化,包括芳香族化合物、葡萄糖、硫化合物和氢气,但宏转录组分析表明,主要的电子供体是芳香族化合物,它会抑制厌氧氨氧化活性。Ca. D. 脱硫弧菌和 Ca. B. pituitae 之间通过芳香族化合物代谢的相互关系可能控制着两种物种的种群平衡。Ca. D. 脱硫弧菌还有可能通过不规则卡尔文循环固定 CO,并在化能自养条件下将反硝化与氢气和硫化合物的氧化偶联。这种代谢多功能性表明一种混合营养的生活方式,这将有助于 Ca. D. 脱硫弧菌在厌氧氨氧化生物反应器中的生长。