Suppr超能文献

M6A-GSMS:利用梯度提升决策树(GBDT)和堆叠学习在多个物种中对N-甲基腺苷位点进行计算识别

M6A-GSMS: Computational identification of N-methyladenosine sites with GBDT and stacking learning in multiple species.

作者信息

Zhang Shengli, Wang Jinyue, Li Xinjie, Liang Yunyun

机构信息

School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China.

School of Science, Xi'an Polytechnic University, Xi'an, P. R. China.

出版信息

J Biomol Struct Dyn. 2022;40(22):12380-12391. doi: 10.1080/07391102.2021.1970628. Epub 2021 Aug 30.

Abstract

N-methyladenosine (mA) is one of the most abundant forms of RNA methylation modifications currently known. It involves a wide range of biological processes, including degradation, stability, alternative splicing, etc. Therefore, the development of convenient and efficient mA prediction technologies are urgent. In this work, a novel predictor based on GBDT and stacking learning is developed to identify mA sites, which is called M6A-GSMS. To achieve accurate prediction, we explore RNA sequence information from four aspects: correlation, structure, physicochemical properties and pseudo ribonucleic acid composition. After using the GBDT algorithm for feature selection, a stacking model is constructed by combining seven basic classifiers. Compared with other state-of-the-art methods, the results show that M6A-GSMS can obtain excellent performance for identifying the mA sites. The prediction accuracy of , , , and reaches 88.4%, 60.8%, 80.5%, 92.4% and 61.8%, respectively. This method provides an effective prediction for the investigation of mA sites. In addition, all the datasets and codes are currently available at https://github.com/Wang-Jinyue/M6A-GSMS.Communicated by Ramaswamy H. Sarma.

摘要

N-甲基腺苷(mA)是目前已知的最丰富的RNA甲基化修饰形式之一。它涉及广泛的生物过程,包括降解、稳定性、可变剪接等。因此,开发方便高效的mA预测技术迫在眉睫。在这项工作中,开发了一种基于梯度提升决策树(GBDT)和堆叠学习的新型预测器来识别mA位点,称为M6A-GSMS。为了实现准确预测,我们从相关性、结构、物理化学性质和伪核糖核酸组成四个方面探索RNA序列信息。在使用GBDT算法进行特征选择后,通过组合七个基本分类器构建了一个堆叠模型。与其他现有方法相比,结果表明M6A-GSMS在识别mA位点方面可以获得优异的性能。其在[具体数据集1]、[具体数据集2]、[具体数据集3]、[具体数据集4]和[具体数据集5]上的预测准确率分别达到88.4%、60.8%、80.5%、92.4%和61.8%。该方法为mA位点的研究提供了有效的预测。此外,所有数据集和代码目前可在https://github.com/Wang-Jinyue/M6A-GSMS获取。由拉马什瓦米·H·萨尔马通讯。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验