Suppr超能文献

WHISTLE:一种使用机器学习方法预测的人类 N6-甲基腺苷(m6A)转录组表观遗传学图谱。

WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.

机构信息

Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.

Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX Liverpool, UK.

出版信息

Nucleic Acids Res. 2019 Apr 23;47(7):e41. doi: 10.1093/nar/gkz074.

Abstract

N 6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotes, and plays a pivotal role in various biological processes, such as splicing, RNA degradation and RNA-protein interaction. We report here a prediction framework WHISTLE for transcriptome-wide m6A RNA-methylation site prediction. When tested on six independent datasets, our approach, which integrated 35 additional genomic features besides the conventional sequence features, achieved a major improvement in the accuracy of m6A site prediction (average AUC: 0.948 and 0.880 under the full transcript or mature messenger RNA models, respectively) compared to the state-of-the-art computational approaches MethyRNA (AUC: 0.790 and 0.732) and SRAMP (AUC: 0.761 and 0.706). It also out-performed the existing epitranscriptome databases MeT-DB (AUC: 0.798 and 0.744) and RMBase (AUC: 0.786 and 0.736), which were built upon hundreds of epitranscriptome high-throughput sequencing samples. To probe the putative biological processes impacted by changes in an individual m6A site, a network-based approach was implemented according to the 'guilt-by-association' principle by integrating RNA methylation profiles, gene expression profiles and protein-protein interaction data. Finally, the WHISTLE web server was built to facilitate the query of our high-accuracy map of the human m6A epitranscriptome, and the server is freely available at: www.xjtlu.edu.cn/biologicalsciences/whistle and http://whistle-epitranscriptome.com.

摘要

N6-甲基腺苷(m6A)是真核生物中最普遍的转录后修饰,在剪接、RNA 降解和 RNA-蛋白质相互作用等各种生物过程中发挥着关键作用。我们在这里报告了一个用于全转录组 m6A RNA 甲基化位点预测的预测框架 WHISTLE。在六个独立的数据集上进行测试时,我们的方法在 m6A 位点预测的准确性方面取得了重大改进(在完整转录本或成熟信使 RNA 模型下,平均 AUC 分别为 0.948 和 0.880),与最先进的计算方法 MethyRNA(AUC:0.790 和 0.732)和 SRAMP(AUC:0.761 和 0.706)相比。它还优于现有的转录后组数据库 MeT-DB(AUC:0.798 和 0.744)和 RMBase(AUC:0.786 和 0.736),这些数据库是基于数百个转录后组高通量测序样本构建的。为了探测单个 m6A 位点变化所影响的潜在生物学过程,根据“关联即有罪”的原则,我们结合 RNA 甲基化谱、基因表达谱和蛋白质-蛋白质相互作用数据,实施了一种基于网络的方法。最后,我们构建了 WHISTLE 网络服务器,以方便查询我们高精度的人类 m6A 转录后组图谱,服务器可在以下网址访问:www.xjtlu.edu.cn/biologicalsciences/whistlehttp://whistle-epitranscriptome.com。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40f/6468314/7908dbe41803/gkz074fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验