Henkel Jan, Medeiros Savi Flavia, Berner Arne, Fountain Stephanie, Saifzadeh Siamak, Steck Roland, Epari Devakar R, Woodruff Maria A, Knackstedt Mark, Schuetz Michael A, Hutmacher Dietmar W
Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; Department of Trauma Surgery, Lutheran Hospital Goettingen-Weende, Goettingen, Germany.
Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Kelvin Grove, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Australia; Faculty of Engineering, School of Mechanical Medical & Process Engineering, Queensland University of Technology, Kelvin Grove, Australia.
Bone. 2021 Dec;153:116163. doi: 10.1016/j.bone.2021.116163. Epub 2021 Aug 28.
Large volume losses in weight bearing long bones are a major challenge in clinical practice. Despite multiple innovations over the last decades, significant limitations subsist in current clinical treatment options which is driving a strong clinical demand for clinically translatable treatment alternatives, including bone tissue engineering applications. Despite these shortcomings, preclinical large animal models of large volume segmental bone defects to investigate the regenerative capacity of bone tissue engineering strategies under clinically relevant conditions are rarely described in literature. We herein present a newly established preclinical ovine animal model for the treatment of XL volume (19 cm) segmental tibial defects. In eight aged male Merino sheep (age > 6 years) a mid-diaphyseal tibial segmental defect was created and stabilized with a 5.6 mm Dynamic Compression Plate (DCP). We present short-term (3 months) and long-term (12-15 months) results of a pilot study using medical grade Polycaprolactone-Tricalciumphosphate (mPCL-TCP) scaffolds combined with a dose of 2 mg rhBMP-7 delivered in Platelet-Rich- Plasma (PRP). Furthermore, detailed analyses of the mechanical properties of the scaffolds as well as interfragmentary movement (IFM) and DCP-surface strain in vitro and a comprehensive description of the surgical and post-surgery protocol and post-mortem analysis is given.
负重长骨的大量骨质流失是临床实践中的一项重大挑战。尽管在过去几十年中有多项创新,但目前的临床治疗选择仍存在重大局限性,这推动了对具有临床可转化性的治疗替代方案的强烈临床需求,包括骨组织工程应用。尽管存在这些缺点,但在临床相关条件下研究骨组织工程策略再生能力的临床前大型动物大体积节段性骨缺损模型在文献中很少被描述。我们在此介绍一种新建立的临床前绵羊动物模型,用于治疗超大体积(19厘米)的胫骨节段性缺损。在八只成年雄性美利奴绵羊(年龄>6岁)中,制造了一个胫骨骨干中段节段性缺损,并用一个5.6毫米的动力加压钢板(DCP)进行固定。我们展示了一项试点研究的短期(3个月)和长期(12 - 15个月)结果,该研究使用医用级聚己内酯 - 磷酸三钙(mPCL - TCP)支架,并结合在富血小板血浆(PRP)中递送的2毫克重组人骨形态发生蛋白 - 7(rhBMP - 7)剂量。此外,还给出了支架力学性能以及体外片段间运动(IFM)和DCP表面应变的详细分析,以及手术和术后方案及尸检分析的全面描述。