Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106036118.
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this "superselectivity." However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
基于受体密度的微小差异可靠地区分细胞对于细胞间或病毒-细胞识别、信号转导的启动以及靶向药物输送至关重要。这种基于受体密度的不同表面之间的锐利区分只能通过多价相互作用来实现。一些理论和实验工作有助于我们理解这种“超选择性”。然而,仍然缺少一种通用的、受控制的实验模型系统,允许在配体-受体水平上进行定量测量。在这里,我们提出了一种基于胶体粒子的多价模型系统,该系统配备了表面可移动的 DNA 接头,可以超选择性地靶向表面功能化的互补移动 DNA 接头。我们使用显微镜和Förster 共振能量转移 (FRET) 的组合方法,可以直接观察到配体-受体对在接触区域的结合和招募。我们发现胶体-表面结合概率随着配体或受体浓度的增加呈非线性变化。此外,我们观察到较弱的配体-受体相互作用具有更高的灵敏度,并且我们确认单个接头的结合可逆性的时间尺度对超选择性有很强的影响。这些前所未有的配体-受体水平的见解为两种流体膜之间的多价相互作用提供了动态信息,这种相互作用由可移动的受体和配体介导,并将为未来研究时空配体-受体动力学对胶体-表面结合的作用提供基础。