Department of Pediatrics, Section of Developmental Biology.
Neuroscience Graduate Program.
J Neurosci. 2021 Oct 13;41(41):8532-8544. doi: 10.1523/JNEUROSCI.0783-21.2021. Epub 2021 Sep 2.
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein , and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development. In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
在脊椎动物中枢神经系统中,少突胶质细胞产生髓鞘,一种特殊的膜,以隔离和支持轴突。单个少突胶质细胞用不同长度和厚度的髓鞘包裹多个轴突。髓鞘在少突胶质细胞突起的远端生长,多条工作线提供了证据表明 mRNAs 和 RNA 结合蛋白定位于髓鞘,共同支持局部翻译控制髓鞘生长的模型。什么信号转导机制可以控制这一点?一个强有力的候选者是 Akt-mTOR 途径,这是一个主要的细胞信号枢纽,协调转录、翻译、代谢和细胞骨架组织。在这里,我们使用斑马鱼作为模型系统,发现 Akt-mTOR 信号在发育过程中促进髓鞘鞘生长和稳定性。通过对少突胶质细胞的细胞特异性操作,我们表明 Akt-mTOR 途径驱动帽依赖翻译来促进髓鞘形成,并且恢复帽依赖翻译足以挽救 mTOR 功能丧失动物中的髓鞘缺陷。此外,mTOR 依赖性翻译调节剂被磷酸化并与编码经典髓鞘翻译蛋白的 mRNA 共定位,生物信息学研究揭示了髓鞘转录组中许多潜在的翻译靶标。总之,这些数据提出了这样一种可能性,即在新生髓鞘鞘中 Akt-mTOR 信号通过在发育过程中翻译髓鞘驻留 mRNAs 来促进鞘生长。在大脑和脊髓中,少突胶质细胞延伸的过程紧密包裹轴突,形成富含蛋白质和脂质的髓鞘,增加电脉冲并提供营养支持。髓鞘膜在初始轴突包裹后会剧烈生长,这一过程需要蛋白质和脂质的合成。蛋白质和脂质的合成如何与在特定位置产生髓鞘的需求相协调仍然未知。我们的研究表明,Akt-mTOR 信号通路通过调节蛋白质翻译来促进髓鞘鞘的生长。由于我们在髓鞘中发现了 Akt-mTOR 途径的翻译调节剂,我们的数据提出了这样一种可能性,即 Akt-mTOR 活性调节髓鞘中的翻译,以按需将髓鞘递送到需要的地方。