Dombrowski Pierre-Martin, Kachel Stefan R, Neuhaus Leonard, Gottfried J Michael, Witte Gregor
Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35032 Marburg, Germany.
Nanoscale. 2021 Aug 28;13(32):13816-13826. doi: 10.1039/d1nr03532k. Epub 2021 Aug 4.
Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role.
尽管精确了解有机吸附质在固体表面的结合能对于实现分子纳米结构以及分子与衬底相互作用的理论建模至关重要,但实验测定绝非易事。程序升温脱附(TPD)是一种广泛使用的技术,能够提供此类信息,但定量分析需要详细了解脱附的指前因子,因此对于通常表现出显著分子间相互作用的较大分子,很少在定量层面进行。在此,我们对吸附在Au(111)上的并五苯和全氟并五苯单层的TPD数据进行了全面分析,该体系用作多环芳烃吸附在贵金属表面的模型系统。我们表明,指前因子随表面覆盖率变化几个数量级,并在热控单层脱附过程中由于旋转自由度的突然激活而呈阶梯状演变。通过互补的依赖覆盖率的功函数测量,确定了界面偶极矩。这使得能够识别横向分子间相互作用的起源并量化其相对贡献,我们通过力场计算对其进行了建模。该分析清楚地表明,分子间排斥的主要原因是分子内电荷分布之间的静电相互作用,而界面偶极仅起次要作用。