文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在前列腺靶向活检结果预测中的应用——模糊逻辑的潜在应用。

Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic.

机构信息

Department of Surgery, Candiolo Cancer Institute, FPO-IRCCS, Turin, Candiolo, Italy.

Uro-technology Working Group of the Young Academic Urologists (YAU) Working Party of the European Association of Urology (EAU), Arnhem, The Netherlands.

出版信息

Prostate Cancer Prostatic Dis. 2022 Feb;25(2):359-362. doi: 10.1038/s41391-021-00441-1. Epub 2021 Sep 3.


DOI:10.1038/s41391-021-00441-1
PMID:34480083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8413110/
Abstract

BACKGROUND: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy. METHODS: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes. RESULTS: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≥ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases. CONCLUSIONS: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone.

摘要

背景:在当前精准前列腺癌(PCa)手术时代,确定最佳前列腺活检患者仍然是一个悬而未决的问题。本研究旨在评估是否可以通过使用基于一组临床活检前特征的人工智能方法来预测前列腺靶向活检(TB)的结果。

方法:从 2014 年 3 月至 2019 年 12 月,我们从前瞻性维持的 TB 数据库中提取了前列腺特异性抗原(PSA)、PSA 密度、直肠指检(DRE)、以前的前列腺活检、mp-MRI 上可疑病变的数量、病变体积、病变位置和 Pi-Rads 评分等方面的预活检特征。我们的方法基于模糊逻辑和关联规则挖掘,旨在预测 TB 结果。

结果:共纳入 1448 例患者。使用频繁模式增长算法,我们提取了 875 条规则,并用于构建模糊分类器。对 963 例患者进行分类,而对于其余 484 例患者,由于没有与他们输入变量匹配的规则,因此未对其进行分类。分析分类患者,我们获得了特异性为 59.2%,敏感性为 90.8%,阴性和阳性预测值分别为 81.3%和 76.6%。特别是,对于 ISUP≥3 PCa,我们的模型能够正确预测 98.1%的活检结果。

结论:在这项研究中,我们证明了同时使用人工智能算法观察多个活检前变量的可能性可以提高 TB 结果的预测能力,优于 PSA、其衍生物和 MRI 单独使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b2/8413110/7c779c234845/41391_2021_441_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b2/8413110/7c779c234845/41391_2021_441_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b2/8413110/7c779c234845/41391_2021_441_Fig1_HTML.jpg

相似文献

[1]
Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic.

Prostate Cancer Prostatic Dis. 2022-2

[2]
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative.

Radiol Med. 2018-2

[3]
Multiparametric MRI in detection and staging of prostate cancer.

Dan Med J. 2017-2

[4]
Comparison of classical transrectal prostate biopsy versus cognitive registration in rebiopsy.

Actas Urol Esp (Engl Ed). 2019-6

[5]
[Real-time MRI/US fusion-guided biopsy improves detection rates of prostate cancer in pre-biopsied patients].

Aktuelle Urol. 2014-5

[6]
The Value of Endorectal Magnetic Resonance Imaging of the Prostate in Improving the Detection of Anterior Prostate Cancer.

Anticancer Res. 2016-8

[7]
Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy.

Scand J Urol. 2015-2

[8]
Magnetic Resonance Imaging (MRI)-Targeted Biopsy in Patients with Prostate-Specific Antigen (PSA) Levels <20 ng/mL: A Single-Center Study in Northeastern China.

Med Sci Monit. 2021-8-8

[9]
Prostate cancer detection rate in men undergoing transperineal template-guided saturation and targeted prostate biopsy.

Prostate. 2022-2

[10]
Can Prostate Imaging Reporting and Data System Version 2 reduce unnecessary prostate biopsies in men with PSA levels of 4-10 ng/ml?

J Cancer Res Clin Oncol. 2018-3-5

引用本文的文献

[1]
Machine Learning-Based Prediction of Prostate Biopsy Necessity Using PSA, MRI, and Hematologic Parameters.

J Clin Med. 2024-12-31

[2]
Follow-up on patients with initial negative mpMRI target and systematic biopsy for PI-RADS ≥ 3 lesions - an EAU-YAU study enhancing prostate cancer detection.

Prostate Cancer Prostatic Dis. 2025-6

[3]
Accuracy, readability, and understandability of large language models for prostate cancer information to the public.

Prostate Cancer Prostatic Dis. 2024-5-14

[4]
Quality of information and appropriateness of Open AI outputs for prostate cancer.

Prostate Cancer Prostatic Dis. 2025-3

[5]
Editorial: new horizons in robotic platforms.

Prostate Cancer Prostatic Dis. 2024-3

[6]
Developers-Doctor-patients: the artificial intelligence's trifecta.

Prostate Cancer Prostatic Dis. 2024-3

[7]
Role of Perilesional Sampling of Patients Undergoing Fusion Prostate Biopsies.

Life (Basel). 2023-8-10

[8]
Quality of information and appropriateness of ChatGPT outputs for urology patients.

Prostate Cancer Prostatic Dis. 2024-3

[9]
New robotic platforms for prostate surgery: the future is now.

Prostate Cancer Prostatic Dis. 2023-9

[10]
Machine-Learning-Based Tool to Predict Target Prostate Biopsy Outcomes: An Internal Validation Study.

J Clin Med. 2023-6-28

本文引用的文献

[1]
The role of additional standard biopsy in the MRI-targeted biopsy era.

Minerva Urol Nefrol. 2020-10

[2]
Artificial intelligence and neural networks in urology: current clinical applications.

Minerva Urol Nefrol. 2020-2

[3]
Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use.

Eur Urol. 2016-1

[4]
ESUR prostate MR guidelines 2012.

Eur Radiol. 2012-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索