Department of Surgery, Candiolo Cancer Institute, FPO-IRCCS, Turin, Candiolo, Italy.
Uro-technology Working Group of the Young Academic Urologists (YAU) Working Party of the European Association of Urology (EAU), Arnhem, The Netherlands.
Prostate Cancer Prostatic Dis. 2022 Feb;25(2):359-362. doi: 10.1038/s41391-021-00441-1. Epub 2021 Sep 3.
BACKGROUND: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy. METHODS: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes. RESULTS: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≥ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases. CONCLUSIONS: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone.
背景:在当前精准前列腺癌(PCa)手术时代,确定最佳前列腺活检患者仍然是一个悬而未决的问题。本研究旨在评估是否可以通过使用基于一组临床活检前特征的人工智能方法来预测前列腺靶向活检(TB)的结果。
方法:从 2014 年 3 月至 2019 年 12 月,我们从前瞻性维持的 TB 数据库中提取了前列腺特异性抗原(PSA)、PSA 密度、直肠指检(DRE)、以前的前列腺活检、mp-MRI 上可疑病变的数量、病变体积、病变位置和 Pi-Rads 评分等方面的预活检特征。我们的方法基于模糊逻辑和关联规则挖掘,旨在预测 TB 结果。
结果:共纳入 1448 例患者。使用频繁模式增长算法,我们提取了 875 条规则,并用于构建模糊分类器。对 963 例患者进行分类,而对于其余 484 例患者,由于没有与他们输入变量匹配的规则,因此未对其进行分类。分析分类患者,我们获得了特异性为 59.2%,敏感性为 90.8%,阴性和阳性预测值分别为 81.3%和 76.6%。特别是,对于 ISUP≥3 PCa,我们的模型能够正确预测 98.1%的活检结果。
结论:在这项研究中,我们证明了同时使用人工智能算法观察多个活检前变量的可能性可以提高 TB 结果的预测能力,优于 PSA、其衍生物和 MRI 单独使用。
Prostate Cancer Prostatic Dis. 2022-2
Dan Med J. 2017-2
Actas Urol Esp (Engl Ed). 2019-6
J Cancer Res Clin Oncol. 2018-3-5
Prostate Cancer Prostatic Dis. 2024-5-14
Prostate Cancer Prostatic Dis. 2025-3
Prostate Cancer Prostatic Dis. 2024-3
Prostate Cancer Prostatic Dis. 2024-3
Life (Basel). 2023-8-10
Prostate Cancer Prostatic Dis. 2024-3
Prostate Cancer Prostatic Dis. 2023-9
Minerva Urol Nefrol. 2020-10
Minerva Urol Nefrol. 2020-2
Eur Radiol. 2012-2-10