Piao Huiyan, Rejinold N Sanoj, Choi Goeun, Pei Yi-Rong, Jin Geun-Woo, Choy Jin-Ho
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.
College of Science and Technology, Dankook University, Cheonan, 31116, South Korea.
Microporous Mesoporous Mater. 2021 Oct;326:111394. doi: 10.1016/j.micromeso.2021.111394. Epub 2021 Aug 28.
COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to 97% compared to the solubility of intact NIC (40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC-NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.
新型冠状病毒肺炎(COVID-19)是一种迅速演变的紧急情况,目前尚未发现特效药物。因此,有必要借助先进的药剂学为这场持续的大流行找到解决方案。所提出的解决方案是重新利用美国食品药品监督管理局(FDA)批准的药物,如氯硝柳胺(NIC),它具有多种使导致COVID-19的特定病毒粒子——严重急性呼吸综合征冠状病毒2(SARS-CoV-2)失活的途径。然而,NIC在水溶液中几乎不溶,因此生物利用度差,导致药物疗效低。为克服这一缺点,我们在此提出一种基于吐温60包衣给药系统的口服制剂,该系统由三种不同的介孔二氧化硅生物材料组成,如MCM-41、SBA-15以及包裹有NIC分子的地质聚合物。根据胃肠溶液中的释放研究,与相同条件下完整NIC的溶解度(约40%)相比,NIC-二氧化硅纳米杂化物中NIC的累积释放量大幅提高至约97%。我们还通过对大鼠进行NIC-二氧化硅口服制剂的药代动力学(PK)研究,证实了NIC具有治疗相关的生物利用度。此外,我们详细讨论了PK参数不仅如何通过工程化的多孔结构和性质改变,而且如何通过二氧化硅纳米颗粒孔内离子-NIC偶极、NIC-NIC偶极和/或孔壁-NIC范德华力之间的界面相互作用改变。