Suppr超能文献

利用易感-感染-康复(SIR)模型概念对2019冠状病毒病大流行进行数学分析。

Mathematical analysis of COVID-19 pandemic by using the concept of SIR model.

作者信息

Garg Harish, Nasir Abdul, Jan Naeem, Khan Sami Ullah

机构信息

School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University Patiala, Patiala, India.

Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan, 29050 KPK Pakistan.

出版信息

Soft comput. 2023;27(6):3477-3491. doi: 10.1007/s00500-021-06133-1. Epub 2021 Aug 28.

Abstract

The health organizations around the world are currently facing one of the greatest challenges, to overcome the current global pandemic, COVID-19. It erupted in December 2019, in Wuhan City, China. It spreads rapidly throughout the world within couple of months. In this paper, the data of the COVID-19 have been collected, organized, analyzed and interpreted using the discrete-time model of SIR epidemic model. Moreover, results for several countries from different regions of the world have been obtained. Furthermore, comparative study has been carried out for the countries under consideration. The comparison was performed for the data of different countries on same dates of each month. However, the calculations are carried out for thirteen consecutive weeks, to investigate the rate of spread and the control of the disease in these countries. This guides us to some important concepts like factors favoring the spread of virus and those resisting the spread. Different regions are studied and their data have been evaluated to know which regions are the most effected. This study helps to know the important factors about the behavior of the coronavirus in different environments, such as lockdowns, temperatures, humidity and other restrictions. The proposed concepts and equations can be used to project the upcoming behavior of the pandemic.

摘要

世界各地的卫生组织目前正面临着最大的挑战之一,即战胜当前的全球大流行疾病——新冠病毒肺炎(COVID-19)。它于2019年12月在中国武汉市爆发,并在短短几个月内迅速蔓延至全球。在本文中,我们使用SIR传染病模型的离散时间模型收集、整理、分析和解释了新冠病毒肺炎的数据。此外,还得出了世界不同地区几个国家的结果。此外,还对所考虑的国家进行了比较研究。比较是针对每个月相同日期的不同国家的数据进行的。然而,连续进行了十三周的计算,以调查这些国家疾病的传播速度和控制情况。这为我们引出了一些重要概念,如有利于病毒传播的因素和阻碍传播的因素。对不同地区进行了研究,并对其数据进行了评估,以了解哪些地区受影响最大。这项研究有助于了解冠状病毒在不同环境下行为的重要因素,如封锁、温度、湿度和其他限制措施。所提出的概念和方程可用于预测大流行疾病未来的发展态势。

相似文献

4
Predictive model with analysis of the initial spread of COVID-19 in India.预测模型分析印度 COVID-19 的初始传播情况。
Int J Med Inform. 2020 Nov;143:104262. doi: 10.1016/j.ijmedinf.2020.104262. Epub 2020 Aug 25.

本文引用的文献

2
Efficient Security and Authentication for Edge-Based Internet of Medical Things.面向基于边缘的医疗物联网的高效安全与认证
IEEE Internet Things J. 2020 Nov 13;8(21):15652-15662. doi: 10.1109/JIOT.2020.3038009. eCollection 2021 Nov 1.
5
Managing the R0 of COVID-19: mathematics fights back.控制新冠病毒的基本传染数:数学反击战。
Anaesthesia. 2020 Dec;75(12):1643-1647. doi: 10.1111/anae.15151. Epub 2020 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验