Suppr超能文献

用于分析意大利新冠疫情的随机SIR模型中的漏检情况。

Underdetection in a stochastic SIR model for the analysis of the COVID-19 Italian epidemic.

作者信息

Bodini Antonella, Pasquali Sara, Pievatolo Antonio, Ruggeri Fabrizio

机构信息

CNR IMATI "E. Magenes", Milano, Italy.

出版信息

Stoch Environ Res Risk Assess. 2022;36(1):137-155. doi: 10.1007/s00477-021-02081-2. Epub 2021 Aug 28.

Abstract

We propose a way to model the underdetection of infected and removed individuals in a compartmental model for estimating the COVID-19 epidemic. The proposed approach is demonstrated on a stochastic SIR model, specified as a system of stochastic differential equations, to analyse data from the Italian COVID-19 epidemic. We find that a correct assessment of the amount of underdetection is important to obtain reliable estimates of the critical model parameters. The adaptation of the model in each time interval between relevant government decrees implementing contagion mitigation measures provides short-term predictions and a continuously updated assessment of the basic reproduction number.

摘要

我们提出了一种方法,用于在用于估计新冠疫情的 compartmental 模型中对感染和移除个体的检测不足进行建模。所提出的方法在一个随机 SIR 模型上进行了演示,该模型被指定为一个随机微分方程组,用于分析来自意大利新冠疫情的数据。我们发现,正确评估检测不足的数量对于获得关键模型参数的可靠估计非常重要。在实施疫情缓解措施的相关政府法令之间的每个时间间隔内对模型进行调整,可以提供短期预测以及对基本再生数的持续更新评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dc5/8397881/7c91fff6dd0b/477_2021_2081_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验