Bodini Antonella, Pasquali Sara, Pievatolo Antonio, Ruggeri Fabrizio
CNR IMATI "E. Magenes", Milano, Italy.
Stoch Environ Res Risk Assess. 2022;36(1):137-155. doi: 10.1007/s00477-021-02081-2. Epub 2021 Aug 28.
We propose a way to model the underdetection of infected and removed individuals in a compartmental model for estimating the COVID-19 epidemic. The proposed approach is demonstrated on a stochastic SIR model, specified as a system of stochastic differential equations, to analyse data from the Italian COVID-19 epidemic. We find that a correct assessment of the amount of underdetection is important to obtain reliable estimates of the critical model parameters. The adaptation of the model in each time interval between relevant government decrees implementing contagion mitigation measures provides short-term predictions and a continuously updated assessment of the basic reproduction number.
我们提出了一种方法,用于在用于估计新冠疫情的 compartmental 模型中对感染和移除个体的检测不足进行建模。所提出的方法在一个随机 SIR 模型上进行了演示,该模型被指定为一个随机微分方程组,用于分析来自意大利新冠疫情的数据。我们发现,正确评估检测不足的数量对于获得关键模型参数的可靠估计非常重要。在实施疫情缓解措施的相关政府法令之间的每个时间间隔内对模型进行调整,可以提供短期预测以及对基本再生数的持续更新评估。