Suppr超能文献

评估全球 COVID-19 的基本生殖数:一项荟萃分析。

Assessment of basic reproductive number for COVID-19 at global level: A meta-analysis.

机构信息

Department of Internal Medicine, Medical School, Nantong University, Nantong, China.

Department of Computer Science, New York Institute of Technology, New York, NY, USA.

出版信息

Medicine (Baltimore). 2021 May 7;100(18):e25837. doi: 10.1097/MD.0000000000025837.

Abstract

BACKGROUND

There are large knowledge gaps regarding how transmission of 2019 novel coronavirus disease (COVID-19) occurred in different settings across the world. This study aims to summarize basic reproduction number (R0) data and provide clues for designing prevention and control measures.

METHODS

Several databases and preprint platforms were retrieved for literature reporting R0 values of COVID-19. The analysis was stratified by the prespecified modeling method to make the R0 values comparable, and by country/region to explore whether R0 estimates differed across the world. The average R0 values were pooled using a random-effects model.

RESULTS

We identified 185 unique articles, yielding 43 articles for analysis. The selected studies covered 5 countries from Asia, 5 countries from Europe, 12 countries from Africa, and 1 from North America, South America, and Australia each. Exponential growth rate model was most favored by researchers. The pooled global R0 was 4.08 (95% CI, 3.09-5.39). The R0 estimates for new and shifting epicenters were comparable or even higher than that for the original epicenter Wuhan, China.

CONCLUSIONS

The high R0 values suggest that an extraordinary combination of control measures is needed for halting COVID-19.

摘要

背景

关于 2019 年新型冠状病毒病(COVID-19)在世界不同环境中的传播方式,存在着大量的知识空白。本研究旨在总结基本繁殖数(R0)数据,并为设计防控措施提供线索。

方法

检索了多个数据库和预印本平台,以获取报告 COVID-19 的 R0 值的文献。分析按预设的建模方法分层,以使 R0 值具有可比性,并按国家/地区分层,以探讨 R0 估计值在全球范围内是否存在差异。使用随机效应模型汇总平均 R0 值。

结果

我们确定了 185 篇独特的文章,其中有 43 篇文章可供分析。所选研究涵盖了亚洲的 5 个国家、欧洲的 5 个国家、非洲的 12 个国家,以及北美、南美和澳大利亚各 1 个国家。指数增长模型是研究人员最青睐的模型。全球 R0 的合并值为 4.08(95%置信区间,3.09-5.39)。新的和转移的中心的 R0 估计值与中国武汉最初的中心相当或更高。

结论

高 R0 值表明需要采取特殊的综合控制措施来阻止 COVID-19 的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/781a/8104145/051347d6cf27/medi-100-e25837-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验