Suppr超能文献

基于多目标遗传算法的深度学习模型,用于利用医学图像数据自动检测新冠肺炎

Multi-objective Genetic Algorithm Based Deep Learning Model for Automated COVID-19 Detection Using Medical Image Data.

作者信息

Bansal S, Singh M, Dubey R K, Panigrahi B K

机构信息

Computer Science and Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016 India.

Robert Bosch Engineering and Business Solutions Private Limited Head Office, 123, Hosur Rd, 7th Block, Koramangala, Bengaluru, Karnataka 560095 India.

出版信息

J Med Biol Eng. 2021;41(5):678-689. doi: 10.1007/s40846-021-00653-9. Epub 2021 Sep 1.

Abstract

PURPOSE

In early 2020, the world is amid a significant pandemic due to the novel coronavirus disease outbreak, commonly called the COVID-19. Coronavirus is a lung infection disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2). Because of its high transmission rate, it is crucial to detect cases as soon as possible to effectively control the spread of this pandemic and treat patients in the early stages. RT-PCR-based kits are the current standard kits used for COVID-19 diagnosis, but these tests take much time despite their high precision. A faster automated diagnostic tool is required for the effective screening of COVID-19.

METHODS

In this study, a new semi-supervised feature learning technique is proposed to screen COVID-19 patients using chest CT scans. The model proposed in this study uses a three-step architecture, consisting of a convolutional autoencoder based unsupervised feature extractor, a multi-objective genetic algorithm (MOGA) based feature selector, and a Bagging Ensemble of support vector machines based binary classifier. The proposed architecture has been designed to provide precise and robust diagnostics for binary classification (COVID vs.nonCOVID). A dataset of 1252 COVID-19 CT scan images, collected from 60 patients, has been used to train and evaluate the model.

RESULTS

The best performing classifier within 127 ms per image achieved an accuracy of 98.79%, the precision of 98.47%, area under curve of 0.998, and an F1 score of 98.85% on 497 test images. The proposed model outperforms the current state of the art COVID-19 diagnostic techniques in terms of speed and accuracy.

CONCLUSION

The experimental results prove the superiority of the proposed methodology in comparison to existing methods.The study also comprehensively compares various feature selection techniques and highlights the importance of feature selection in medical image data problems.

摘要

目的

2020年初,全球正处于由新型冠状病毒疾病爆发引发的重大疫情之中,该疾病通常被称为COVID-19。冠状病毒病是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的肺部感染疾病。由于其高传播率,尽早检测出病例对于有效控制这一疫情的传播以及在早期治疗患者至关重要。基于逆转录聚合酶链反应(RT-PCR)的试剂盒是目前用于COVID-19诊断的标准试剂盒,但尽管这些检测精度很高,却需要花费大量时间。因此,需要一种更快的自动化诊断工具来有效筛查COVID-19。

方法

在本研究中,提出了一种新的半监督特征学习技术,用于通过胸部CT扫描筛查COVID-19患者。本研究提出的模型采用三步架构,包括基于卷积自动编码器的无监督特征提取器、基于多目标遗传算法(MOGA)的特征选择器以及基于支持向量机的Bagging集成二分类器。所提出的架构旨在为二分类(COVID与非COVID)提供精确且稳健的诊断。从60名患者收集的1252张COVID-19 CT扫描图像数据集已用于训练和评估该模型。

结果

在每张图像127毫秒内表现最佳的分类器在497张测试图像上实现了98.79%的准确率、98.47%的精确率、0.998的曲线下面积以及98.85%的F1分数。所提出的模型在速度和准确性方面优于当前最先进的COVID-19诊断技术。

结论

实验结果证明了所提出方法相对于现有方法的优越性。该研究还全面比较了各种特征选择技术,并突出了特征选择在医学图像数据问题中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/308b/8408308/74c0379e4bfc/40846_2021_653_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验