文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在 CODEX 多重成像数据中准确鉴定细胞类型的策略。

Strategies for Accurate Cell Type Identification in CODEX Multiplexed Imaging Data.

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.

Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.

出版信息

Front Immunol. 2021 Aug 13;12:727626. doi: 10.3389/fimmu.2021.727626. eCollection 2021.


DOI:10.3389/fimmu.2021.727626
PMID:34484237
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8415085/
Abstract

Multiplexed imaging is a recently developed and powerful single-cell biology research tool. However, it presents new sources of technical noise that are distinct from other types of single-cell data, necessitating new practices for single-cell multiplexed imaging processing and analysis, particularly regarding cell-type identification. Here we created single-cell multiplexed imaging datasets by performing CODEX on four sections of the human colon (ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-barcoded antibodies. After cell segmentation, we implemented five different normalization techniques crossed with four unsupervised clustering algorithms, resulting in 20 unique cell-type annotations for the same dataset. We generated two standard annotations: hand-gated cell types and cell types produced by over-clustering with spatial verification. We then compared these annotations at four levels of cell-type granularity. First, increasing cell-type granularity led to decreased labeling accuracy; therefore, subtle phenotype annotations should be avoided at the clustering step. Second, accuracy in cell-type identification varied more with normalization choice than with clustering algorithm. Third, unsupervised clustering better accounted for segmentation noise during cell-type annotation than hand-gating. Fourth, Z-score normalization was generally effective in mitigating the effects of noise from single-cell multiplexed imaging. Variation in cell-type identification will lead to significant differential spatial results such as cellular neighborhood analysis; consequently, we also make recommendations for accurately assigning cell-type labels to CODEX multiplexed imaging.

摘要

多重成像技术是一种新兴的强大的单细胞生物学研究工具。然而,它引入了新的技术噪声源,这些噪声源与其他类型的单细胞数据不同,因此需要针对单细胞多重成像处理和分析采用新的实践,尤其是在细胞类型鉴定方面。在这里,我们使用一组 47 个寡核苷酸编码抗体对人体结肠的四个部分(升结肠、横结肠、降结肠和乙状结肠)进行 CODEX 实验,创建了单细胞多重成像数据集。在进行细胞分割后,我们实施了五种不同的归一化技术,并结合了四种无监督聚类算法,从而为同一数据集生成了 20 种独特的细胞类型注释。我们生成了两种标准注释:手动门控细胞类型和通过空间验证进行过聚类产生的细胞类型。然后,我们在四个细胞类型粒度级别上比较了这些注释。首先,增加细胞类型的粒度会降低标记准确性;因此,在聚类步骤中应避免对细微表型进行注释。其次,细胞类型识别的准确性因归一化选择而变化大于聚类算法。第三,与手动门控相比,无监督聚类在细胞类型注释期间更好地解释了分割噪声。第四,Z 分数归一化通常可以有效减轻单细胞多重成像噪声的影响。细胞类型鉴定的变化将导致显著的差异空间结果,例如细胞邻居分析;因此,我们还为准确地将细胞类型标签分配给 CODEX 多重成像提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/d2d2b4b3d48c/fimmu-12-727626-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/5eb80bcafef6/fimmu-12-727626-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/07328a50ebaa/fimmu-12-727626-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/4bdc8a99a250/fimmu-12-727626-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/4ad4cb443367/fimmu-12-727626-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/cd3d18294391/fimmu-12-727626-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/d2d2b4b3d48c/fimmu-12-727626-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/5eb80bcafef6/fimmu-12-727626-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/07328a50ebaa/fimmu-12-727626-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/4bdc8a99a250/fimmu-12-727626-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/4ad4cb443367/fimmu-12-727626-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/cd3d18294391/fimmu-12-727626-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/8415085/d2d2b4b3d48c/fimmu-12-727626-g006.jpg

相似文献

[1]
Strategies for Accurate Cell Type Identification in CODEX Multiplexed Imaging Data.

Front Immunol. 2021

[2]
Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction.

Eur J Immunol. 2021-5

[3]
OPTIMAL: An OPTimized Imaging Mass cytometry AnaLysis framework for benchmarking segmentation and data exploration.

Cytometry A. 2024-1

[4]
Highly multiplexed spatial profiling with CODEX: bioinformatic analysis and application in human disease.

Semin Immunopathol. 2023-1

[5]
CODEX multiplexed tissue imaging with DNA-conjugated antibodies.

Nat Protoc. 2021-8

[6]
GammaGateR: semi-automated marker gating for single-cell multiplexed imaging.

Bioinformatics. 2024-6-3

[7]
scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.

Brief Bioinform. 2024-3-27

[8]
Annotation of spatially resolved single-cell data with STELLAR.

Nat Methods. 2022-11

[9]
A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution.

Nat Commun. 2022-2-9

[10]
CellSeg: a robust, pre-trained nucleus segmentation and pixel quantification software for highly multiplexed fluorescence images.

BMC Bioinformatics. 2022-1-18

引用本文的文献

[1]
PRISM: a Python package for interactive and integrated analysis of multiplexed tissue microarrays.

NAR Genom Bioinform. 2025-8-21

[2]
CytoSpatio: Learning cell type spatial relationships using multirange, multitype point process models.

PLoS Comput Biol. 2025-8-21

[3]
ROSIE: AI generation of multiplex immunofluorescence staining from histopathology images.

Nat Commun. 2025-8-16

[4]
Concerted changes in Epithelium and Stroma: a multi-scale, multi-omics analysis of progression from Barrett's Esophagus to adenocarcinoma.

Dev Cell. 2025-7-14

[5]
Spatial multi-omics and deep learning reveal fingerprints of immunotherapy response and resistance in hepatocellular carcinoma.

bioRxiv. 2025-6-12

[6]
Alterations of the composition and spatial organization of the microenvironment following non-dysplastic Barrett's esophagus through progression to cancer.

bioRxiv. 2025-6-12

[7]
Fluoro-forest: A random forest workflow for cell type annotation in high-dimensional immunofluorescence imaging.

bioRxiv. 2025-6-20

[8]
An mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite for cancer immunotherapy.

Nat Commun. 2025-7-1

[9]
Spatially organized inflammatory myeloid-CD8 T cell aggregates linked to Merkel-cell Polyomavirus driven Reorganization of the Tumor Microenvironment.

bioRxiv. 2025-6-6

[10]
Unsupervised Clustering of Cell Populations in Germinal Centers Using Multiplexed Immunofluorescence.

Biology (Basel). 2025-5-11

本文引用的文献

[1]
MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging.

Nat Methods. 2022-3

[2]
Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging.

Nat Methods. 2022-3

[3]
Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning.

Nat Biotechnol. 2022-4

[4]
CODEX multiplexed tissue imaging with DNA-conjugated antibodies.

Nat Protoc. 2021-8

[5]
Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction.

Eur J Immunol. 2021-5

[6]
IBEX: A versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues.

Proc Natl Acad Sci U S A. 2020-12-29

[7]
Cellpose: a generalist algorithm for cellular segmentation.

Nat Methods. 2021-1

[8]
MARS: discovering novel cell types across heterogeneous single-cell experiments.

Nat Methods. 2020-12

[9]
Immune contexture analysis in immuno-oncology: applications and challenges of multiplex fluorescent immunohistochemistry.

Clin Transl Immunology. 2020-10-7

[10]
Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front.

Cell. 2020-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索