Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK.
Nat Commun. 2022 Feb 9;13(1):781. doi: 10.1038/s41467-022-28470-x.
Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at "SIMPLI [ https://github.com/ciccalab/SIMPLI ]".
多重成像技术能够在保持空间信息的同时,以单细胞分辨率研究生物组织。目前,高维成像数据分析是特定于技术的,需要多种工具,限制了分析的可扩展性和结果的可重复性。在这里,我们介绍了 SIMPLI(来自多重图像的单细胞识别),这是一个灵活且与技术无关的软件,它统一了多重成像数据分析的所有步骤。在原始图像处理之后,SIMPLI 对组织载玻片进行空间分辨的单细胞分析,以及对标记物表达进行独立于细胞的定量分析,以研究在细胞水平不可检测的特征。SIMPLI 具有高度的可定制性,可以在台式计算机和高性能计算环境上运行,从而为大型数据集实现工作流程并行化。SIMPLI 在分析的每个步骤都会生成多个表格和图形输出。其容器化实现和最小配置要求使 SIMPLI 成为用于多重成像数据分析的便携式和可重复的解决方案。软件可在"SIMPLI [https://github.com/ciccalab/SIMPLI]"获取。